Accurate Complex Multiplication in Floating－Point Arithmetic

Vincent Lefèvre Jean－Michel Muller．
Université de Lyon，CNRS，Inria，France．

Arith26，
Kyoto，June 2019

にでa

Accurate complex multiplication in FP arithmetic

- $\omega \cdot x$, emphasis on the case where $\Re(\omega)$ and $\Im(\omega)$ are double-word numbers-i.e., pairs (high-order, low-order) of FP numbers;
- applications: Fourier transforms, iterated products.

Assumptions:

- radix-2, precision- p, FP arithmetic;
- rounded to nearest (RN) FP operations;
- an FMA instruction is available;
- underflow/overflow do not occur.

Bound on relative error of (real) operations:

$$
|\operatorname{RN}(a+b)-(a+b)| \leqslant \frac{u}{1+u} \cdot|a+b|<u \cdot|a+b|
$$

where u (rounding unit) equals 2^{-p}.

Some variables: double-word (DW) numbers

- also called double-double in the literature;
- $v \in \mathbb{R}$ represented by a pair of FP numbers v_{h} and v_{ℓ} such that

$$
\begin{aligned}
& v=v_{h}+v_{\ell} \\
& \left|v_{\ell}\right| \leqslant \frac{1}{2} u \operatorname{ulp}(v) \leqslant u \cdot|v|
\end{aligned}
$$

- algorithms and libraries for manipulating DW numbers: QD (Hida, Li \& Bailey), Campary (Joldes, Popescu \& others),
- use the 2Sum, Fast2Sum \& Fast2Mult algorithms (see later).

Naive algorithms for complex FP multiplication

- straightforward transcription of the formula

$$
z=\left(x^{R}+i x^{\prime}\right) \cdot\left(y^{R}+i y^{\prime}\right)=\left(x^{R} y^{R}-x^{\prime} y^{\prime}\right)+i \cdot\left(x^{\prime} y^{R}+x^{R} y^{\prime}\right)
$$

- bad solution if componentwise relative error is to be minimized;
- adequate solution if normwise relative error is at stake.
(\hat{z} approximates z with normwise error $|(\hat{z}-z) / z|$)
Algorithms:
- if no FMA instruction is available

$$
\left\{\begin{align*}
\hat{z}^{R} & =\operatorname{RN}\left(\operatorname{RN}\left(x^{R} y^{R}\right)-\operatorname{RN}\left(x^{\prime} y^{\prime}\right)\right), \tag{1}\\
\hat{z}^{\prime} & =\operatorname{RN}\left(\operatorname{RN}\left(x^{R} y^{\prime}\right)+\operatorname{RN}\left(x^{\prime} y^{R}\right)\right) .
\end{align*}\right.
$$

- if an FMA instruction is available

$$
\left\{\begin{align*}
\hat{z}^{R} & =\operatorname{RN}\left(x^{R} y^{R}-\operatorname{RN}\left(x^{\prime} y^{\prime}\right)\right), \tag{2}\\
\hat{z}^{\prime} & =\operatorname{RN}\left(x^{R} y^{\prime}+\operatorname{RN}\left(x^{\prime} y^{R}\right)\right)
\end{align*}\right.
$$

Naive algorithms for complex multiplication

- if no FMA instruction is available

$$
\left\{\begin{align*}
\hat{z}^{R} & =\operatorname{RN}\left(\operatorname{RN}\left(x^{R} y^{R}\right)-\operatorname{RN}\left(x^{\prime} y^{\prime}\right)\right), \tag{1}\\
\hat{z}^{\prime} & =\operatorname{RN}\left(\operatorname{RN}\left(x^{R} y^{\prime}\right)+\operatorname{RN}\left(x^{\prime} y^{R}\right)\right)
\end{align*}\right.
$$

- if an FMA instruction is available

$$
\left\{\begin{align*}
\hat{z}^{R} & =\operatorname{RN}\left(x^{R} y^{R}-\operatorname{RN}\left(x^{\prime} y^{\prime}\right)\right), \tag{2}\\
\hat{z}^{\prime} & =\operatorname{RN}\left(x^{R} y^{\prime}+\operatorname{RN}\left(x^{\prime} y^{R}\right)\right)
\end{align*}\right.
$$

Asymptotically optimal bounds on the normwise relative error of (1) and (2) are known:

- Brent et al (2007): bound $\sqrt{5} \cdot u$ for (1),
- Jeannerod et al. (2017): bound $2 \cdot u$ for (2).

Accurate complex multiplication

Our goal:

- smaller normwise relative errors,
- closer to the best possible one (i.e., u, unless we output DW numbers),
- at the cost of more complex algorithms.

We consider the product

$$
\omega \cdot x,
$$

with

$$
\omega=\omega^{R}+i \cdot \omega^{\prime} \text { and } x=x^{R}+i \cdot x^{\prime}
$$

where:

- ω^{R} and ω^{\prime} are DW numbers (special case FP considered later)
- x^{R} and x^{\prime} are FP numbers.

Basic building blocks: Error-Free Transforms

Expressing $a+b$ as a DW number
Algorithm 1: 2Sum (a, b). Returns s and t such that $s=\operatorname{RN}(a+b)$ and $t=a+b-s$
$s \leftarrow \operatorname{RN}(a+b)$
$a^{\prime} \leftarrow \operatorname{RN}(s-b)$
$b^{\prime} \leftarrow \operatorname{RN}\left(s-a^{\prime}\right)$
$\delta_{a} \leftarrow \operatorname{RN}\left(a-a^{\prime}\right)$
$\delta_{b} \leftarrow \operatorname{RN}\left(b-b^{\prime}\right)$
$t \leftarrow \operatorname{RN}\left(\delta_{a}+\delta_{b}\right)$

Expressing $a \cdot b$ as a DW number
Algorithm 2: Fast2Mult (a, b). Returns π and ρ such that $\pi=\operatorname{RN}(a b)$ and $\rho=a b-\pi$

$$
\begin{aligned}
& \pi \leftarrow \operatorname{RN}(a b) \\
& \rho \leftarrow \operatorname{RN}(a b-\pi)
\end{aligned}
$$

The multiplication algorithm

- $\omega^{R}=\Re(\omega)$ and $\omega^{\prime}=\Im(\omega)$: DW numbers, i.e.,

$$
\omega=\omega^{R}+i \cdot \omega^{\prime}=\left(\omega_{h}^{R}+\omega_{\ell}^{R}\right)+i \cdot\left(\omega_{h}^{I}+\omega_{\ell}^{\prime}\right),
$$

where $\omega_{h}^{R}, \omega_{\ell}^{R}, \omega_{h}^{\prime}$, and ω_{ℓ}^{\prime} are FP numbers that satisfy:

- $\left|\omega_{\ell}^{R}\right| \leqslant \frac{1}{2} u \operatorname{lp}\left(\omega^{R}\right) \leqslant u \cdot\left|\omega^{R}\right| ;$
- $\left|\omega_{\ell}^{\prime}\right| \leqslant \frac{1}{2} u \operatorname{lp}\left(\omega^{\prime}\right) \leqslant u \cdot\left|\omega^{\prime}\right|$.
- Real part z^{R} of the result (similar for imaginary part):
- difference v_{h}^{R} of the high-order parts of $\omega_{h}^{R} x^{R}$ and $\omega_{h}^{\prime} x^{\prime}$,
- add approximated sum γ_{ℓ}^{R} of all the error terms that may have a significant influence on the normwise relative error.
- rather straightforward algorithms: the tricky part is the error bounds.

Real part $\left(\omega_{h}^{R}+\omega_{\ell}^{R}\right) \cdot x^{R}-\left(\omega_{h}^{\prime}+\omega_{\ell}^{\prime}\right) \cdot x^{\prime}$

The multiplication algorithm

```
Algorithm 3: Computes \(\omega \cdot x\), where the real \& imaginary parts of \(\omega=\)
\(\left(\omega_{h}^{R}+\omega_{\ell}^{R}\right)+i \cdot\left(\omega_{h}^{\prime}+\omega_{\ell}^{\prime}\right)\) are DW, and the real \& im. parts of \(x\) are FP.
    1: \(t^{R} \leftarrow \mathrm{RN}\left(\omega_{\ell}^{\prime} x^{\prime}\right)\)
    2: \(\pi_{\ell}^{R} \leftarrow \mathrm{RN}\left(\omega_{\ell}^{R} x^{R}-t^{R}\right)\)
    3: \(\left(P_{h}^{R}, P_{\ell}^{R}\right) \leftarrow\) Fast2Mult \(\left(\omega_{h}^{\prime}, x^{\prime}\right)\)
    4: \(r_{\ell}^{R} \leftarrow \mathrm{RN}\left(\pi_{\ell}^{R}-P_{\ell}^{R}\right)\)
    5: \(\left(Q_{h}^{R}, Q_{\ell}^{R}\right) \leftarrow\) Fast2Mult \(\left(\omega_{h}^{R}, x^{R}\right)\)
    6: \(s_{\ell}^{R} \leftarrow \operatorname{RN}\left(Q_{\ell}^{R}+r_{\ell}^{R}\right)\)
    7: \(\left(v_{h}^{R}, v_{\ell}^{R}\right) \leftarrow 2 \operatorname{Sum}\left(Q_{h}^{R},-P_{h}^{R}\right)\)
    8: \(\gamma_{\ell}^{R} \leftarrow \operatorname{RN}\left(v_{\ell}^{R}+s_{\ell}^{R}\right)\)
    9: return \(z^{R}=\operatorname{RN}\left(v_{h}^{R}+\gamma_{\ell}^{R}\right)\) (real part)
10: \(t^{\prime} \leftarrow \mathrm{RN}\left(\omega_{\ell}^{\prime} x^{R}\right)\)
11: \(\pi_{\ell}^{\prime} \leftarrow \operatorname{RN}\left(\omega_{\ell}^{R} x^{\prime}+t^{\prime}\right)\)
12: \(\left(P_{h}^{\prime}, P_{\ell}^{\prime}\right) \leftarrow\) Fast2Mult \(\left(\omega_{h}^{\prime}, x^{R}\right)\)
13: \(r_{\ell}^{\prime} \leftarrow \operatorname{RN}\left(\pi_{\ell}^{\prime}+P_{\ell}^{\prime}\right)\)
14: \(\left(Q_{h}^{\prime}, Q_{\ell}^{\prime}\right) \leftarrow\) Fast2Mult \(\left(\omega_{h}^{R}, x^{\prime}\right)\)
15: \(s_{\ell}^{\prime} \leftarrow \operatorname{RN}\left(Q_{\ell}^{\prime}+r_{\ell}^{\prime}\right)\)
16: \(\left(v_{h}^{\prime}, v_{l}^{\prime}\right) \leftarrow 2 \operatorname{Sum}\left(Q_{h}^{\prime}, P_{h}^{\prime}\right)\)
17: \(\gamma_{\ell}^{\prime} \leftarrow \mathrm{RN}\left(v_{\ell}^{\prime}+s_{\ell}^{\prime}\right)\)
18: return \(z^{\prime}=\mathrm{RN}\left(v_{h}^{\prime}+\gamma_{\ell}^{\prime}\right)\) (imaginary part)
```


The multiplication algorithm

Theorem 1
As soon as $p \geqslant 4$, the normwise relative error η of Algorithm 3 satisfies

$$
\eta<u+33 u^{2} .
$$

(remember: the best possible bound is u)
Remarks:

- Condition " $p \geqslant 4$ " always holds in practice;
- Algorithm 3 easily transformed (see later) into an algorithm that returns the real and imaginary parts of z as DW numbers.

Sketch of the proof

- first, we show that

$$
\begin{aligned}
& \left|z^{R}-\Re(w x)\right| \leqslant \alpha n^{R}+\beta N^{R} \\
& \left|z^{\prime}-\Im(w x)\right| \leqslant \alpha n^{\prime}+\beta N^{\prime}
\end{aligned}
$$

with

$$
\begin{aligned}
N^{R} & =\left|\omega^{R} x^{R}\right|+\left|\omega^{\prime} x^{\prime}\right| \\
n^{R} & =\left|\omega^{R} x^{R}-\omega^{\prime} x^{\prime}\right| \\
N^{\prime} & =\left|\omega^{R} x^{\prime}\right|+\left|\omega^{\prime} x^{R}\right| \\
n^{\prime} & =\left|\omega^{R} x^{\prime}+\omega^{\prime} x^{R}\right| \\
\alpha & =u+3 u^{2}+u^{3}, \\
\beta & =15 u^{2}+38 u^{3}+39 u^{4}+22 u^{5}+7 u^{6}+u^{7}
\end{aligned}
$$

- then we deduce

$$
\eta^{2}=\frac{\left(z^{R}-\Re(\omega x)\right)^{2}+\left(z^{\prime}-\Im(\omega x)\right)^{2}}{(\Re(\omega x))^{2}+(\Im(\omega x))^{2}} \leqslant \alpha^{2}+\left(2 \alpha \beta+\beta^{2}\right) \cdot \frac{\left(N^{R}\right)^{2}+\left(N^{\prime}\right)^{2}}{\left(n^{R}\right)^{2}+\left(n^{\prime}\right)^{2}}
$$

- the theorem follows, by using

$$
\frac{\left(N^{R}\right)^{2}+\left(N^{\prime}\right)^{2}}{\left(n^{R}\right)^{2}+\left(n^{\prime}\right)^{2}} \leqslant 2
$$

Obtaining the real and imaginary parts of z as DW numbers

- replace the FP addition $z^{R}=\mathrm{RN}\left(v_{h}^{R}+\gamma_{\ell}^{R}\right)$ of line 9 of Algorithm 3 by a call to $2 \operatorname{Sum}\left(v_{h}^{R}, \gamma_{\ell}^{R}\right)$,
- replace the FP addition $z^{\prime}=\operatorname{RN}\left(v_{h}^{\prime}+\gamma_{\ell}^{\prime}\right)$ of line 18 by a call to 2Sum ($v_{h}^{\prime}, \gamma_{\ell}^{\prime}$).
- resulting relative error

$$
\sqrt{241} \cdot u^{2}+\mathcal{O}\left(u^{3}\right) \approx 15.53 u^{2}+\mathcal{O}\left(u^{3}\right)
$$

(instead of $u+33 u^{2}$).
Interest:

- iterative product $\mathbf{z}_{1} \times \mathbf{z}_{2} \times \cdots \times \mathbf{z}_{\mathrm{n}}$: keep the real and imaginary parts of the partial products as DW numbers,
- Fourier transforms: when computing $\mathbf{z}_{\mathbf{1}} \pm \omega \mathbf{z}_{\mathbf{2}}$, keep $\Re\left(\omega z_{2}\right)$ and $\Im\left(\omega z_{2}\right)$ as DW numbers before the \pm.

If ω^{\prime} and ω^{R} are floating-point numbers

$\omega_{\ell}^{\prime}=\omega_{\ell}^{R}=0 \Rightarrow$ Algorithm 3 becomes simpler:

Algorithm 4: Complex multiplication $\omega \cdot x$, where $\Re(\omega)$ and $\Im(\omega)$ are FP numbers.

1: $\left(P_{h}^{R}, P_{\ell}^{R}\right) \leftarrow$ Fast2Mult $\left(\omega^{\prime}, x^{\prime}\right)$
2: $\left(Q_{h}^{R}, Q_{\ell}^{R}\right) \leftarrow$ Fast2Mult $\left(\omega^{R}, x^{R}\right)$
3: $s_{\ell}^{R} \leftarrow \operatorname{RN}\left(Q_{\ell}^{R}-P_{\ell}^{R}\right)$
4: $\left(v_{h}^{R}, v_{\ell}^{R}\right) \leftarrow 2 \operatorname{Sum}\left(Q_{h}^{R},-P_{h}^{R}\right)$
5: $\gamma_{\ell}^{R} \leftarrow \operatorname{RN}\left(v_{\ell}^{R}+s_{\ell}^{R}\right)$
6: return $z^{R}=\operatorname{RN}\left(v_{h}^{R}+\gamma_{\ell}^{R}\right)$ (real part)
7: $\left(P_{h}^{\prime}, P_{\ell}^{\prime}\right) \leftarrow$ Fast2Mult $\left(\omega^{\prime}, x^{R}\right)$
8: $\left(Q_{h}^{\prime}, Q_{\ell}^{\prime}\right) \leftarrow$ Fast2Mult $\left(\omega^{R}, x^{\prime}\right)$
9: $s_{\ell}^{\prime} \leftarrow \mathrm{RN}\left(Q_{\ell}^{\prime}+P_{\ell}^{\prime}\right)$
10: $\left(v_{h}^{\prime}, v_{\ell}^{\prime}\right) \leftarrow 2 \operatorname{Sum}\left(Q_{h}^{\prime}, P_{h}^{\prime}\right)$
11: $\gamma_{\ell}^{\prime} \leftarrow \operatorname{RN}\left(v_{\ell}^{\prime}+s_{\ell}^{\prime}\right)$
12: return $z^{\prime}=\operatorname{RN}\left(v_{h}^{\prime}+\gamma_{\ell}^{\prime}\right)$ (imaginary part)

Real part

Real part

Real part

If ω^{\prime} and ω^{R} are floating-point numbers

- Real and complex parts of Algorithm 4 similar to:
- Cornea, Harrison and Tang's algorithm for $a b+c d$ (with a "+" replaced by a 2 Sum),
- Alg. 5.3 in Ogita, Rump and Oishi's Accurate sum \& dot product (with different order of summation of $P_{\ell}^{R}, Q_{\ell}^{R} \& v_{\ell}^{R}$).
- The error bound $u+33 u^{2}$ of Theorem 1 still applies, but it can be slightly improved:

Theorem 2
As soon as $p \geqslant 4$, the normwise relative error η of Algorithm 4 satisfies

$$
\eta<u+19 u^{2}
$$

Implementation and experiments

- Main algorithm (Algorithm 3) implemented in binary64 (a.k.a. double-precision) arithmetic, compared with other solutions:
- naive formula in binary64 arithmetic;
- naive formula in binary128 arithmetic;
- GNU MPFR with precision ranging from 53 to 106 bits.
- loop over N random inputs, itself inside another loop doing K iterations;
- Goal of the external loop: get accurate timings without having to choose a large N, with input data that would not fit in the cache;
- For each test, we chose $(N, K)=(1024,65536),(2048,32768)$ and $(4096,16384)$.

Implementation and experiments

- tests run on two computers with a hardware FMA:
- x86_64 with Intel Xeon E5-2609 v3 CPUs, under Linux (Debian/unstable), with GCC 8.2.0 and a Clang 8 preversion, using -march=native;
- ppc64le with POWER9 CPUs, under Linux (CentOS 7), with GCC 8.2.1, using -mcpu=power9.
- options -03 and -02.
- With GCC, -03 -fno-tree-slp-vectorize also used to avoid a loss of performance with some vectorized codes.
- In all cases, -static used to avoid the overhead due to function calls to dynamic libraries.

Implementation and experiments

Table 1: Timings on $\times 86 _64$ (in secs, for $N K=2^{26}$ ops) with GCC. GNU MPFR is used with separate \pm and \times.

		minimums			maximums		
$N \rightarrow$		1024	2048	4096	1024	2048	4096
	Algorithm 3	0.92	0.97	0.97	0.95	1.02	1.02
gcc	Naive, Binary64	0.61	0.61	0.62	0.61	0.62	0.62
-03	Naive, Binary128	21.32	21.44	21.46	21.43	21.53	21.54
- f...	GNU MPFR	12.59	13.01	13.12	22.72	22.85	22.80
	Algorithm 3	0.91	0.97	0.97	0.95	1.02	1.02
	Naive, Binary64	0.61	0.62	0.62	0.61	0.62	0.62
gcc	Naive, Binary128	20.90	21.03	21.08	21.01	21.10	21.13
-02	GNU MPFR	12.31	12.74	12.85	23.11	23.20	23.18

Implementation and experiments

Table 2: Timings on $x 86$ _ 64 (in secs, for $N K=2^{26}$ ops) with Clang.

		minimums			maximums		
$N \rightarrow$		1024	2048	4096	1024	2048	4096
clang	Algorithm 3	0.86	1.09	1.10	0.96	1.15	1.15
	Naive, Binary64	0.39	0.61	0.63	0.47	0.65	0.66
	Naive, Binary128	21.65	21.77	21.81	21.74	21.87	21.88
	GNU MPFR	12.24	12.63	12.72	22.91	22.94	22.97
	Algorithm 3	0.88	1.08	1.10	0.96	1.14	1.15
	Naive, Binary64	0.40	0.61	0.63	0.48	0.65	0.66
	Naive, Binary128	21.33	21.45	21.50	21.49	21.57	21.59
	GNU MPFR	12.15	12.54	12.65	23.15	23.21	23.21

Implementation and experiments

Table 3: Timings on a POWER9 (in secs, for $N K=2^{26}$ ops). The POWER9 has hardware support for Binary128.

		minimums			maximums		
$N \rightarrow$		1024	2048	4096	1024	2048	4096
	Algorithm 3	0.97	0.97	0.97	0.98	0.99	1.00
gcc	Naive, Binary64	0.47	0.47	0.51	0.48	0.48	0.52
-03	Naive, Binary128	2.22	2.22	2.22	2.24	2.24	2.24
- f...	GNU MPFR	16.42	16.59	16.66	30.06	30.39	30.44
	Algorithm 3	0.98	0.98	0.98	0.99	1.01	1.01
	Naive, Binary64	0.47	0.47	0.51	0.47	0.47	0.51
gcc	Naive, Binary128	2.22	2.22	2.22	2.24	2.24	2.24
-02	GNU MPFR	16.36	16.58	16.63	30.29	30.29	30.49

Implementation and experiments

- Naive formula in binary64 (inlined code) \approx two times as fast as our implementation of Algorithm 3, but significantly less accurate;
- Naive formula in binary128, using the __float128 C type (inlined code):
- x86_64: from 19 to 25 times as slow as Algorithm 3,
- on POWER9: 2.3 times as slow.
- GNU MPFR using precisions from 53 to 106: from 11 to 26 times as slow as Algorithm 3 on $\times 86 _64$, and from 17 to 31 times as slow on POWER9.

The error bound of Theorem 1 is tight: In Binary64 arithmetic, with

$$
\begin{aligned}
\omega^{R} & =0 \times 1 . \mathrm{d} 1 \mathrm{ef} 9 \mathrm{ea} 4 \mathrm{a} 0013 \mathrm{p}-1+0 \times 1 . \mathrm{ae} 88 \mathrm{ba} 2 \mathrm{a} 277 \mathrm{ep}-56 \\
\omega^{\prime} & =0 \times 1 . \mathrm{f5c28321df365p-81+0} \mathrm{\times 1.c4c3e7b506d06p-135} \\
x^{R} & =0 \times 1.194 \mathrm{f} 298 \mathrm{~b} 4 \mathrm{~d} 152 \mathrm{p}-1 \\
x^{\prime} & =0 \times 1.5 \mathrm{c} 1 \mathrm{fdca444f7cp-14}
\end{aligned}
$$

the normwise relative error is 0.99999900913907117123 u .

Conclusion

- Main algorithm:
- the real and imaginary parts of one of the operands are DW, and for the other one they are FP,
- normwise relative error bound close to the best one (u) that one can guarantee,
- only twice as slow as a naive multiplication,
- much faster than binary128 or multiple-precision software.
- 2 variants:
- real and imaginary parts of the output are DW,
- real and imaginary parts of the inputs are FP.

Conclusion

- Main algorithm:
- the real and imaginary parts of one of the operands are DW, and for the other one they are FP,
- normwise relative error bound close to the best one (u) that one can guarantee,
- only twice as slow as a naive multiplication,
- much faster than binary128 or multiple-precision software.
- 2 variants:
- real and imaginary parts of the output are DW,
- real and imaginary parts of the inputs are FP.

Thank you!

