
Alexander Heinecke, Greg Henry, Ping Tak Peter Tang

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

2

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

3

What is BFLOAT16
Int16 based training (KNM/1st Nervana):

23 bit mantissa

10 bit mantissa

7bit mantissas

s

s

8 bit exp

8 bit exp

5 bit exp

FP32

FP16

bfloat16

“15 bit mantissa”s 8 bit shared expInt16-KNM

“15 bit mantissa”s 5 bit shr.expFlexpoint

The best compromise among FP16, int16,
Flexpoint and it even reuses a lot of inference
Hardware!

FP16 based training (GPUs):

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The History Of BFLOAT16

2016 2017 2018

NVIDIA P100
FP16->FP16

NVIDIA V100
FP16->FP32

NVIDIA CTO
bfloat16 is better

Intel KNM
int16

Intel AIDC
bfloat16

AMD Vega
FP16->FP16

Google TPU
bfloat16

AMD Vega2
FP16->FP32

Intel
Flexpoint

Google mentions
“lossy FP32”
compression in TF
Release paper

2019

ARM
Amazon

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Bfloat16 on Intel Architecture

BF16 instructions for Cooper
Lake now public at:
https://software.intel.com/en-
us/intel-architecture-
instruction-set-extensions-
programming-reference

3 Instructions:

• VNNI-Style dot-product
with FP32 accumulate

• 2 FP32->BF16 converts
(RNE) for 1024bits and
512bits inputs

Our bfloat16 evaluation for deep
learning applications can be found
here:
http://arxiv.org/abs/1905.12322

https://software.intel.com/en-us/intel-architecture-instruction-set-extensions-programming-reference
http://arxiv.org/abs/1905.12322

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

What about combining data formats?

• Concept behind double-double: pair two doubles together and do “careful
calculations” to keep track of over 100+ bits of accuracy.

• Why not do the same thing with bfloat16?

• We can have a single BF16, denoted bx1 and have roughly 8-bits of accuracy

• We can have a pair of BF16s, denoted bx2, and roughly 16-bits of accuracy

• We can have a triplet of BF16s, denoted bx3, and roughly 24-bits of accuracy

• This is comparable to FP32!

• This is not identical to FP32!

• Especially interesting for inner-products as we have a FP32 accumulator

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Creating Doubles or Triplets Very Easy (Compared
to Double-Double Algorithms)

We can write every single precision number using this split:

 is bfloat16 and contains the most significant bits

 is bfloat16 and contains the next significant bits

 is bfloat16 and contains the least significant bits

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Let’s have a more detailed look at dot-products

 “n rounding errors”

A split into 3 BF16 is slightly worse,
but should not be relevant in practice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Doing only the most relevant computations

Number of Bfloat16s used in the split Number of Multiplies to Do

1 a1*b1 1 (bin 1 only)

2 (a1,a2)*(b1,b2) 3 (bins 1 and 2 only)

3 (a1,a2,a3)*(b1,b2,b3) 6 (bins 1, 2, and 3 only)

4 (a1,a2,a3,a4)*(b1,b2,b3,b4) 10 (bins 1-4 only)

Add up the terms in this order: from the highest bin (likely smallest numbers)
to the lowest bin (likely biggest numbers)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

But why do all this extra work??

• Because BFloat16 might be many times
faster than FP32 in AVX-512.

• Suppose for the sake of argument, that it’s
16x over FMA-based FP32 in AVX-512.

• 3 bfloats using 6 multiplies will have
~6x the flops

• There’s still potential speed-up over
FP32

• Similar accuracy but faster (assuming
the splits can be done relatively free)

BF16 Speed-
Up

Over FP32

Combined
BF16

For FP32

8 1.3 = 8/6

16 2.7 = 16/6

32 5.2 = 32/6

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

BF16x3 Can be Invisible to SGEMM (FP32 matrix-
matrix multiply) users
• Different numeric results, but in many cases greater accuracy

• Time in BF16x3-GEMM is: the decomposition, matrix multiplication, adding
up the results at the end.

• The middle matrix-multiply step is O(n^3) and must be done 6 times

• The first and last step are O(n^2) and must be done once

• Hopefully most of the time will be in GEMM…

• The data can “start” in FP32 format, and “finish” in FP32 format

• The results may be faster… Again, BF16 might be 8x-32x faster than FP32

• 6x more computations executed at 16x faster? A win!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Okay, so it works but what do the experiments say?

• Tested lots of dot products with varying ranges

• Tested lots of GEMM variants and cases

• Small Range (Uniformly Random Distribution in a close range like [-1,1]

• Huge Range (Uniformly Random Exponents)

• Medium Range (Gaussian Distribution on the exponents)

• Tested LU decomposition

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Matrix Multiply - GEMM

Various GEMM average relative error vs. DGEMM (||A x B – DGEMM||/||DGEMM||)
over 1000 runs compared to original fp64 data in [-1.0,1.0] range with drand48()
randomization. bxA B[d] means breaking each matrix up into A bfloat16
matrices, doing B products. Optionally, collect the final answer with ”d” (double
precision) or not.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

GEMM contd.

huge Range:
Max. exponent
distribution

medium Range:
Gaussian
exponent
distribution

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

LU Factorization

SGETRF vs BFLOAT16x3 6 LU Decomposition: Element errors average
improvement over a 100 runs for N x N square matrices with an extremely large
range [-1^10, 1^10] and matrices with a small range [-1, 1]

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Conclusions

DL focused hardware solutions (which implement such mixed-precision FMA
units) can be utilized for higher precision linear algebra

• We can match the accuracy of SGEMM and friends using BF16 mixed
precision FMAs only

• BF16 mixed precision FMAs are potentially much energy and space
friendly than pure FP32 units

The solutions present can be transferred to FP16 FMA with FP32 accumulate
and also be combined with iterative refinement operations (see our paper)

Thank you for your time

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Worse case for the 3-bfloat split break-down?
• In general, accuracy is equivalent to FP32, but the worst case error is

unfortunately worse.

• The “favorite bad” case is when due to being at the extreme negative
exponent, none of the other bfloat16 numbers are non-zero.

• Suppose x has an exponent of -126 and we wish: x = b1+b2+b3

• b1 = bfloat(x), but suppose x has lots of interesting bits in position 0-15,
these will be lost on b1.

• b2 = b3 = 0 (Special bad case because it’s a conversion error.)

• So any errors involving (b1,b2,b3) will have identical accuracy as simply 1
bfloat16 conversion- in other words, typically 2-3 decimal places only

