
New 3D Projection
Transformation for Point Clouds

by
Alvaro Vázquez and Elisardo Antelo

University of Santiago de Compostela
Spain

Polygon vs Point Rendering in 3D Computer
Graphics (Animation)
Conventional CG sytem: polygoms for rendering:

Fron-end: vertex
Back-end: pixel.

Alternative Points

• For complex geometry

• Connectivity information is not necessary or not provided.

• Examples: 3D Scanning Systems to produce point clouds of real models.

OPALS: A Framework for Airborne Laser Scanning Data Analysis (TU Wien)
- High precision topographic data adquisition

pixel

pixel

2

Example of Point Cloud: use supercomputers
to generate digital suface models

3

Point Rendering: From 2D Homogenenous
Coordinates to Screen Coordinates
2 D Homogeneous Coordinates obtained applying a 3x3 transformations
(Rotation + translation+ Scaling): (x,y,z) [Composition EASY]

If 2x2 Rotation + traslation are used – compositions can not be done - and
computation is highly inefficient: R(2x2) + T

To obtain screen coordinates (2D coordinates) (u,v):

Perpective correction (x,y,z): scale (x,y) by the factor 1/z

4

Point Rendering Processing Model and Data
Structure
Scene: cubic resolution areas with a grid of sxsxs. Regular data structure organized
as an octree (recursiverly transversed)

Nodes in the higher level of the octree build by subsampling by a factor of two.

The recursion process of the octree selects all nodes that are in the view fustrum.

The proyection of a sxsxs sample grid (with points) should assure one sample per
pixel on the screen.

If this is not verified (more pixels), the node level is rejected and the children is
analyzed (more resolution is necessary) at least one point per pixel or
more

5

Point Rendering Processing Model and Data
Structure

https://en.wikipedia.org/wiki/Octree

Regular data structure organized as an octree (recursiverly transversed)

https://developer.nvidia.com

s x s x s (grid – s parameter)

6

https://en.wikipedia.org/wiki/Octree
https://developer.nvidia.com/

Simplified Perspective Correction:
Computation of 1/z
As said before: (x,y,z) 2D homogeneous coordinates in camera space after composite
transformations

Compute screen coordinates (u,v) from camera coordinates (x,y,z), perspective correction is
performed:

1) Compute (1/zr) in Reference Points Pr (full precision) – and copute its square (1/zr)2.

2) Compute linear approximation of 1/z for points with distance up to D from Pr: USE MAC INSTEAD RECIPROCAL

7

Simplified Perspective Correction:
Computation of 1/z
- Trade-off among computation error and number of points per reference points (Pr) that use the

linear approximation (just one MAC).

- More error implies more points per reference point using a linear approximation (just one MAC),
and less reference points with full precision of reciprocal.

- Relate the error of computaton of 1/z using the linear approximation, with distante D to the
reference point (1/zr)

zr

d

+kd-kd

1/zr
8

Points with Linear approximation computation

Computation Model: granularity d

Granularity in x -> granularity in z

p granularity in screen in
x direction -> same in z

Consider linear approximaton:
(the same in camera space)

Bound of Error:

d

y-axis

y-axis

x-axis

d d

Based on simple geometry: d upper bound of the granularity of the cube

9

Bound on k (2k grid points use the same zr)

Bound of error in the proyected pixel (to compute (u,v)):
Example f=0.1 means 10% error

This bound of error allows to make linear approximation
of 1/z in a bound of 2k grid points (zr-kd, zr+kd).

Lower bound of granularity of proyected pixels

After some work on different bounds, we obtain
a bound for k

Number of pixels

k ≤
𝑝𝑓

2

zr

d

+kd-kd

1/zr 10

Upper Bound of k (2k grid points use the
same zr for linear approximation)

For 4K Resolution and f=5% (fraction of pixel error)

UPPER BOUND OF k=10

Interval of z convered by a reference point zr is +-10d

4K
k ≤

𝑝𝑓

2

11

Upper Bound of Reference Points (r) per Cube

sxsxs cubic resolution areas (grid) in samples organized
in octrees.

Reference Point: zr

f: error of proyected pixel. 12

Average Number of Points per Reference
Point (standard model)

S=32

13

Computational Model

- Transformation Step: done with 3FMACs

- Determination of the reference value from z coordinate
using instruction FRP (basically usung table look-up).

- Compute 1/z with smal error: computation of S+Tz with
S=1/R[i] and T=-(2/R[i])^2; S and T precomputed for all
points of the reference value (Table look-ups)

- Multiplication of computed reciprocal by (x,y)
requiring a FMAC.

Current Graphics hardware (5-6K SP-FPU)
extended with 1.5K FRP units:
500 Points/cycle at the cost of 10% of pixel
error

14

Conclusions

- Hardware for 3D Proyection Transformation using points as primitives.

- The 3D proyection requires a reciprocal operation on each point.

- This implies a lot reciprocal operations, and reciprocal is not an efficient operation.

- We reduced the number of reciprocal operations, introducing MAC instead reciprocal.

- The cost of this reduction in computing complexity is some controlable pixel error.

- We related all the important parameters for the design such as: number of pixels, maximum level
of pixel error, cubic resolution areas (grid).

- We also showed that current graphics hardware extended with some specificic hardware could
achieve a high throughput for point rendering if some low pixel error is alowed (10%).

15

