DLFloat: A 16-b Floating Point format
designed for
Deep Learning Training and Inference

Ankur Agrawal, Silvia M. Mueller?, Bruce Fleischer,
Jungwook Choi, Xiao Sun, Naigang Wang and Kailash Gopalakrishnan

IBM TJ Watson Research Center; 1IBM Systems Group

IBM Research Al

.|||

B dC kg roun d AlexNet to AlphaGo Zero:
A 300,000x Increase in Compute

* Deep Learning has shown remarkable success
in tasks such has image and speech nancte
recognition, machine translation etc. ER b

* Training deep neural networks requires e ¥60 " sppspeecr:
100s of ExaOps of computations O R i o SR,

* Typically performed on a cluster of CPUs or GPUs g o= 77
. . . . o0 2013 2014 2015 - 2016 2017 2018 2019
 Strong trend towards building specialized Year

ASICs for Deep.L.earnlng mfgrence a.nd training Go g|€ iteDnervanss TESLA
* Reduced precision computation exploitsthe .~ " bt e S

resiliency of these algorithms to reduce power — | MYTHIC
consumption and bandwidth requirements ; <DGE I||! uaecompiing Qhiplatelti
: Cambricon

GRAFPHCORE ({cerebras
& . ,

Reduced Precision key to IBM’s Al acceleration g

* We showcased our 1.5 Tflop/s deep learning
accelerator engine at VLSI’18, consisting of a
2D array of FP16 FPUs

* We also announced successful training of
Deep networks using hybrid FP8-FP16

computation

* Both these breakthroughs rely on an
optimized FP16 format designed for
Deep Learning — DLFloat

B. Fleischer et al., VLSI’18

i¥ IEEE

I SPECTRUM Topics ~ Reports ~ Blogs ~ Multimedia ~
IBM’s New Do-It-All Deep-Learning
Chip

IBM's new chip is designed to do both high-precision
learning and low-precision inference across the three
main flavors of deep learning

EETimes

IBM Guvns for 8-bit Al Breakthroughs

By Junko Yoshida, 12.0318 [

N. Wang et al., NeurlPS’18

Outline

* DLFloat details
* Neural network training experiments
* Hardware design

* Conclusions

Proposed 16-b floating point format: DLFloat

s exponent e (6-bit) fraction m (9-bit)

m
X=-15 x2(¢7D) s (1 + =15)
Features:
* Exponent bias (b) =-31
* No sub-normal numbers to simplify FPU logic
* Unsigned zero
 Last binade isn’t reserved for NaNs and infinity

Merged Nan-Infinity

* Observation: if one of the input operands to an FMA instruction is
NaN or Infinity, the result is always NaN or infinity.

* We merge NaN and infinity into one symbol

* Encountering Nan-infinity implies “something went wrong” and exception flag
is raised

* Nan-infinity is unsigned (sign-bit is a don’t care)

DLFloat Format and Instructions
Exponent [Fraction |vale

000000 000000000 0

000000 I=000000000 231 %1 f
000001 ... 111110 * 28 * 1.f
111111 I=111111111 232% 1 f
111111 111111111 Nan-infinity

* FP16 FMA Instruction: R=C+ A*B

* All operands are DLFloat16
* Result is DLFloat16 with Round-nearest-up rounding-mode

* FP8 FMA instruction: R=C + A*B

* R, C: DLFloatl6
* A, B : DLFloat8 (8-bit floating point)

Comparison with other FP16 formats

Smallest Largest
Total
representable representable
bit-width
number number

BFloat16 27(-133) 27(128)-ulp
|IEEE-half 5 10 16 27(-24) 27(16)-ulp
DLFloat A * A

. 6 9 16 27(-31)*+ulp 27(33)-2ulp

* BFloat16 and IEEE-half FPUs employ a mixed-precision FMA instruction
(16-b multiplication, 32-b addition) to prevent accumulation errors
* Limited logic savings

 |[EEE-half employs APEX technique in DL training to automatically find a
suitable scaling factor to prevent overflows and underflows
 Software overhead

Back-propagation with DLFloat16 engine

I I

* All matrix operations are Activation ! ————) ————— Activation *

. 1 1
performed using DLFloat16 | FPl6| Forward GEMM |

FMA instruction Weight_16
FP16
r____FP_16______l___FP_16_-;
Errort ‘ﬁ:FP16 z ¢ : Error 1+1
I

* Only weight updates are

. I Backward GEMM
performed using 32-b I s !
summation

Weight '_““F;zlg_“w_lf_é_;p_m_-;

eig < l - < l

. . 3 | |

2 copies of weights e | e Gradient GEMM |

maintained, all other i !

guantities stored only in ol a2 : o)
DLFloat16 format 1 D—2 [weignt 32 |—[weight 16
= FP32

Q(.) = round nearest-up quantization Steps in Backpropagation algorithm

Results — comparison with Baseline (IEEE-32)

(a) DNN (BN50) (Speech) (b) ResNet32 (CIFAR10) (Image)

65 60
* Trained network wl\ [mmarmres | w) [
indistinguishable from el 9
baseline - g
Bt ks
60
* [n our experiments, we . | | ‘ . | | |
d id nOt n e ed tO a dJ U St ’ ’ Trainin1goepoch h = ’ > Trainirlgoepoch 0 0
n etWO rk hy p e Ir- p a ra m ete rS 100 (c) ResNet50 (Imagenet) (Image) 80 (d) AIexNeF (Imageqet) (Image)
to O bta i n go O d = Training with Single Precision (FP32) = Training with Single Precision (FP32)
—e— Training with DLFloat (FP16) —e— Training with DLFloat (FP16)
convergence < 80 <700
* Allows application B ol 5o
development to be 7 7
decoupled from compute " « " 50|
precision in hardware | | ‘ | | ‘ ‘
200 20 40 60 80 40O 10 20 30 40 50

Training epoch Training epoch

Comparison with other FP16 formats

* In all experiments, inner-product >10']
accumulation done in 16-bits :
250

* IEEE half training does not > 200

converge unless APEX technique is g

applied & 150!
o _ 100
* BFloat16 training converges with |
slight degradation in QoR !

* DLFloat16 trained network
indistinguishable from baseline

=@==Training with Single Precision (FP32)
=== Training with BFloat (1-8-7)

Training with DLFloat (1-6-9)
=8=Training with IEEE-half (1-5-10)]
=== Training with IEEE-half (1-5-10) with APEX |

5 10 15 20 25
Training epoch

30

Long Short-term Memory (LSTM) network trained on
Penn Tree Bank dataset for text generation

BFloatl16 vs DLFloat16 —

a closer look

* With only 7 fraction bits, BFloat16 is likely to
introduce accumulation errors when
performing large inner products

* commonly encountered in language processing
tasks

* We chose a popular language translation
network, Transformer, and kept the precision
of all layers at FP32 except the last layer that
requires an inner product length of 42720

* Persistent performance gap if accumulation is

performed in 16-bit precision

Transformer-base on WMT14 En-De

BLeU score
N N N
N (o)) [00]

N
o

N
~

»
o)

Train Loss
N
N

427

— Training with DLFloat (1-6-9) in last layer
—— Training with BFloat (1-8-7) in last layer |]

5 10 15 20 25 30
Training epoch

— Training with DLFloat (1-6-9) in last layer
—— Training with BFloat (1-8-7) in last layer | |

100 200 300 400 500
x100 updates

DLFloat accumulation enables FP8-training

s GEMM mult. : FPS8
* GEMM accum. : FP16
* Weight update : FP16

* Hybrid FP8-FP16 has 2x
bandwidth efficiency
and 2x power efficiency
over regular FP16, with
no loss of accuracy over
a variety of benchmark
networks

(N. Wang et al., NeurlPS’18)

100
-FP32 Baseline
==Mult: FP8, Acc: FP16, Update: FP16
80F q
9
~ 60f
o
w
» 40p
]
-
20p
Cifar10 full
0 20 40 60 80 100 120
Epoch
100, v -
-FP32 Baseline
| —Muit: FP8, Acc: FP16, Update: FP16
80f
£ 7
s \\“‘-~__
lE 60. —_—
B 5o}
-
4o}
30
BN50_DNN
20 o N -
Epoch

Test Error (%)

Test Error (%)

100 —FP32 Baseline

90 = Mult: FP8, Acc: FP16, Update: FP16

80

70}

60}

so}

40}

I AlexNet

=510 15 20 25 30 35 40 45
Epoch

0 —FP32 Baseline

9 '—'Mult: FP8, Acc: FP16, Update: FP161

g Y

7

6

5

) M

*I ResNet50

2 10 20 30 _40 50 80 70 80

Epoch

FP& training with BFloat vs DLFloat accumulation

* FP8 FMA instruction: R=C+ A*B
* R, C: DLFloatl6
* A, B : DLFloat8 (8-bit floating point)

* 8b multiplication, 16b accumulation

* FP8 format is kept constant,

FP16 format is DLFloat and BFloat

 DLFloat comes much closer to

baseline than BFloat, thus is a better

choice for accumulation format

* Gap can be reduced by keeping last layer training

in FP16, as is the case in previous slide

Perplexity

220

T T T
=@ Training with Single Precision (FP32)
=@ Training with BFloat (1-8-7)

Training with DLFloat (1-6-9)

200 -

—_
(o]
o

—_
[e}
o

—_
N
o

0 5 10 15 20 25 30
Training epoch

Long Short-term Memory (LSTM) network trained on
Penn Tree Bank dataset for text generation
Accumulation length = 10000

Using DLFloat in an Al Training and Inference ASIC

T AT AR AT TR AR TR R KARP AR AR RS LA R T 2-D compute array

b Lefkgen] cml e . . ; ; DLFLoat16
1/ 10-) *a" "’a‘ J FPUs

v v v

!

A

[P
“?«
i
L7

8KB L0 Scratchpad (X)
192+192 GB/s R+W

Ii i P4
S 1t $ E E
* Throughput = 1.5 TFIOPs | | # #
* Density =0.17 TFIOPs/mm? 8 KB L0 Scratchpad (Y)
» DLFloat FPUs are 20x 192+192 ‘133/8 R+W
smaller than IBM 64b FPUs " 2MB Lx Scratchpad W
192 + 192 GB/s R+W
I Core I/O I

B.Fleischer et al.., “A Scalable Multi-TeraOPS Deep Learning Processor Core for Al Training and Inference”
Symposium VLS| 2018

FMA block diagram

* True 16-b pipeline with R, A, B, Cin DLFloat
format

e 10-bit multiplier
* 6 radix-4 booth terms
* 3 stages of 3:2 CSAs

e 34-bit adder

* Simpler than 22-bit adder + 12-bit incrementor
* Designed as 32-bit adder with carry-in

e LZA over entire 34 bits

* Eliminating subnormals simplifies FPU logic

* Also eliminated special logic for signs, NaNs,
Infinities

JELINI

exponents unpack
YwW_ VY i l
EXP & Shift amnt P
. ! Multiplier
. A*B
Aligner C
(shifter)
I !
CSA 3:2
A/
L Adder
i (sum / abs difference)
EXP Normalizer: shifter
T v

Round & pack

VR

Round nearest up rounding mode

| Ls8
+ Table shows the rounding | LsB_| Guard | Sticky _RN-Up | RN-down | RN-even_
0 0 0 0

decision (1 = increment, 0 =

0 0 0

truncate) @
0 0

@ 6

* For Round-nearest up, sticky
information need not be
preserved

P =, = B, O O O O
 », O O +» +» O O

R O kR O Rk O Kk
R B, O O

- simplifies normalizer, rounder

FMA block diagram

DLFloat16 FPU is 20X smaller compared to IBM
double-precision FPUs

FPU Area Breakdown

k

FP16_multiplier

Area breakdown very different from typical
single- and double-precision FPUs!

al 8l

exponents

unpack

Yy ¥

EXP & Shift amnt

v

l

l

Aligner C
(shifter)

Multiplier
A*B

.

vy

CSA 3:2

Adder

(sum / abs difference)

EXP Normalizer: shifter

v

Round & pack

VR

Conclusions

 Demonstrated a 16-bit floating point format optimized for Deep
Learning applications
* Lower overheads compared to IEEE-half precision FP and BFloat16

* Balanced exponent and mantissa width selection for best
range vs resolution trade-off

* allows straightforward substitution when FP16 FMA is employed
* enables hybrid FP8-FP16 FMA-based training algorithms

* Demonstrated ASIC core comprising of 512 DLFloat16-FPUs
* Reduced precision compute enables dense, power-efficient engine
* Excluding some IEEE-754 features results in a lean FPU implementation

Thank youl!

For more information on Al work at IBM Research, please go to
http://www.research.ibm.com/artificial-intelligence/hardware

Marketplace

Al Research AboutUs Vv Partnerships Vv Careers and Internships Vv Research Areas Vv Global Labs v

Hardware for Al

Much of today’s computation remains tied to
hardware built for spreadsheets and databases.
When used for Al it is power-hungry and inefficient.
IBM is pushing the physics of AFto deliver radical

improvement over the nextdecade, with innovation

and co-development from algorithms to systems to
devices.

Exploring the future of AI -

http://www.research.ibm.com/artificial-intelligence/hardware

Backup

PTB — chart 14

pytorch-R LSTM-PTB medium

220 - baseline
™ min val ppl: 87.35
All layers: data prec FP8 152, acc prec BFloat 187, Last FC layer: all BFloat 187
200 - min val ppl: 91.31
RNN layers: data prec FP8 152, acc prec DLFloat 169, Last FC layer: all DLFloat 169
min val ppl: 87.75
180 |
Training is sensitive to quantization in the last layer.
> . _ .
= If the last layer is converted to FP16, training performance improves
o 160
[
(]
Q
T 140
120 1
100 1

FP& training procedure

I .
FP16 weight decay
——— FP8 ! s .
Activation* FPs Z ; Activationt+*? == ;g';‘; =~ TI'eps "I
| 1 "
I I) 1 FP16 N\ FP16 Weight
R Frg_ Forward GEMM | Weight —— D=1 Gradient
Weight! - L e
e _FI;I_G_ mmT T *momentum learning rate
| _FP8 FPS | L1 | - F----- ===
Errort : Z T Errort+ M = | FP16 FP16 |
I omentum IFP16 AN I
\ _____ Backward GEMM , Gradient E——]
{ AXPY: Momentum !
L o - - . 1
' n T - /Iims |
. . FP8 ! !
Weight Gradient* : A Z g : [FP16) FP161 Weight
1 I
: Gradient GEMM | (a) | AXPY: Weight update ! (b)

Figure 2: A diagram showing the precision settings for (a) three GEMM functions during forward
and backward passes, and (b) three AXPY operations during a standard SGD weight update process.

AXPY results are stochastically rounded to FP16

