
DLFloat: A 16-b Floating Point format
designed for

Deep Learning Training and Inference

Ankur Agrawal, Silvia M. Mueller1, Bruce Fleischer,
Jungwook Choi, Xiao Sun, Naigang Wang and Kailash Gopalakrishnan

IBM TJ Watson Research Center; 1IBM Systems Group

Background
• Deep Learning has shown remarkable success

in tasks such has image and speech
recognition, machine translation etc.

• Training deep neural networks requires
100s of ExaOps of computations

• Typically performed on a cluster of CPUs or GPUs

• Strong trend towards building specialized
ASICs for Deep Learning inference and training

• Reduced precision computation exploits the
resiliency of these algorithms to reduce power
consumption and bandwidth requirements

Reduced Precision key to IBM’s AI acceleration

• We showcased our 1.5 Tflop/s deep learning
accelerator engine at VLSI’18, consisting of a
2D array of FP16 FPUs

• We also announced successful training of
Deep networks using hybrid FP8-FP16
computation

• Both these breakthroughs rely on an
optimized FP16 format designed for
Deep Learning – DLFloat

B. Fleischer et al., VLSI’18

N. Wang et al., NeurIPS’18

Outline

• Introduction
• DLFloat details
• Neural network training experiments
• Hardware design
• Conclusions

Proposed 16-b floating point format: DLFloat

Features:
• Exponent bias (b) = -31
• No sub-normal numbers to simplify FPU logic
• Unsigned zero
• Last binade isn’t reserved for NaNs and infinity

exponent e (6-bit) fraction m (9-bit)s

𝑋 = −1% ∗ 2()*+) ∗ (1 +
𝑚
512

)

Merged Nan-Infinity
• Observation: if one of the input operands to an FMA instruction is

NaN or Infinity, the result is always NaN or infinity.

• We merge NaN and infinity into one symbol
• Encountering Nan-infinity implies “something went wrong” and exception flag

is raised

• Nan-infinity is unsigned (sign-bit is a don’t care)

DLFloat Format and Instructions
Exponent Fraction Value

000000 000000000 0

000000 != 000000000 2-31 * 1.f

000001 … 111110 * 2e * 1.f

111111 != 111111111 232 * 1.f

111111 111111111 Nan-infinity

• FP16 FMA Instruction: R = C + A*B
• All operands are DLFloat16
• Result is DLFloat16 with Round-nearest-up rounding-mode

• FP8 FMA instruction: R = C + A*B
• R, C : DLFloat16
• A, B : DLFloat8 (8-bit floating point)

Comparison with other FP16 formats

• BFloat16 and IEEE-half FPUs employ a mixed-precision FMA instruction
(16-b multiplication, 32-b addition) to prevent accumulation errors

• Limited logic savings

• IEEE-half employs APEX technique in DL training to automatically find a
suitable scaling factor to prevent overflows and underflows

• Software overhead

Format Exp
bits

Frac
bits

Total
bit-width

Smallest
representable

number

Largest
representable

number

BFloat16 8 7 16 2^(-133) 2^(128)-ulp

IEEE-half 5 10 16 2^(-24) 2^(16)-ulp

DLFloat
(proposed) 6 9 16 2^(-31)*+ulp 2^(33)-2ulp

Back-propagation with DLFloat16 engine

Error L

Weight_16

Activation L FP16

FP16

FP16
FP16 Activation L+1

Backward GEMM

FP16

FP16

FP16
FP16

Error L+1

Gradient GEMM

FP16

Weight
gradientL FP16

FP16 FP16

Forward GEMM

Apply Update
Weight_32

FP32

FP32

FP16
Weight_32 Weight_16FP32 Q(.)

• All matrix operations are
performed using DLFloat16
FMA instruction

• Only weight updates are
performed using 32-b
summation

• 2 copies of weights
maintained, all other
quantities stored only in
DLFloat16 format

Steps in Backpropagation algorithmQ(.) = round nearest-up quantization

0 5 10 15 20
Training epoch

59

60

61

62

63

64

65

Te
st

 E
rro

r (
%

)

(a) DNN (BN50) (Speech)

Training with Single Precision (FP32)
Training with DLFloat (FP16)

0 50 100 150 200
Training epoch

0

10

20

30

40

50

60

Te
st

 E
rro

r (
%

)

(b) ResNet32 (CIFAR10) (Image)

Training with Single Precision (FP32)
Training with DLFloat (FP16)

0 20 40 60 80
Training epoch

20

40

60

80

100

Te
st

 E
rro

r (
%

)

(c) ResNet50 (Imagenet) (Image)

Training with Single Precision (FP32)
Training with DLFloat (FP16)

0 10 20 30 40 50
Training epoch

40

50

60

70

80

Te
st

 E
rro

r (
%

)

(d) AlexNet (Imagenet) (Image)

Training with Single Precision (FP32)
Training with DLFloat (FP16)

Results – comparison with Baseline (IEEE-32)

• Trained network
indistinguishable from
baseline

• In our experiments, we
did not need to adjust
network hyper-parameters
to obtain good
convergence

• Allows application
development to be
decoupled from compute
precision in hardware

Comparison with other FP16 formats

0 5 10 15 20 25 30
Training epoch

50

100

150

200

250

>1010

Pe
rp

le
xi

ty

Training with Single Precision (FP32)
Training with BFloat (1-8-7)
Training with DLFloat (1-6-9)
Training with IEEE-half (1-5-10)
Training with IEEE-half (1-5-10) with APEX

• In all experiments, inner-product
accumulation done in 16-bits

• IEEE half training does not
converge unless APEX technique is
applied

• BFloat16 training converges with
slight degradation in QoR

• DLFloat16 trained network
indistinguishable from baseline Long Short-term Memory (LSTM) network trained on

Penn Tree Bank dataset for text generation

BFloat16 vs DLFloat16 –
a closer look
• With only 7 fraction bits, BFloat16 is likely to

introduce accumulation errors when
performing large inner products

• commonly encountered in language processing
tasks

• We chose a popular language translation
network, Transformer, and kept the precision
of all layers at FP32 except the last layer that
requires an inner product length of 42720

• Persistent performance gap if accumulation is
performed in 16-bit precision

0 5 10 15 20 25 30
Training epoch

20

22

24

26

28

BL
eU

 s
co

re

Transformer-base on WMT14 En-De

Training with DLFloat (1-6-9) in last layer
Training with BFloat (1-8-7) in last layer

0 100 200 300 400 500
x100 updates

4

4.2

4.4

4.6

4.8

5

Tr
ai

n
Lo

ss

Training with DLFloat (1-6-9) in last layer
Training with BFloat (1-8-7) in last layer

DLFloat accumulation enables FP8-training
• GEMM mult. : FP8
• GEMM accum. : FP16
• Weight update : FP16

• Hybrid FP8-FP16 has 2x
bandwidth efficiency
and 2x power efficiency
over regular FP16, with
no loss of accuracy over
a variety of benchmark
networks

(N. Wang et al., NeurIPS’18)

FP8 training with BFloat vs DLFloat accumulation
• FP8 FMA instruction: R = C + A*B

• R, C : DLFloat16
• A, B : DLFloat8 (8-bit floating point)
• 8b multiplication, 16b accumulation

• FP8 format is kept constant,
FP16 format is DLFloat and BFloat

• DLFloat comes much closer to
baseline than BFloat, thus is a better
choice for accumulation format

• Gap can be reduced by keeping last layer training
in FP16, as is the case in previous slide

0 5 10 15 20 25 30
Training epoch

80

100

120

140

160

180

200

220

Pe
rp

le
xi

ty

Training with Single Precision (FP32)
Training with BFloat (1-8-7)
Training with DLFloat (1-6-9)

Long Short-term Memory (LSTM) network trained on
Penn Tree Bank dataset for text generation
Accumulation length = 10000

Using DLFloat in an AI Training and Inference ASIC

8K
B

 L
0

Sc
ra

tc
hp

ad
 (X

)
19

2+
19

2
G

B/
s

R
+W

8 KB L0 Scratchpad (Y)
192 + 192 GB/s R+W

PE PE PE PE…

PE PE PE PE…

…
PE PE PE PE…

… … …

SFU SFU SFU SFU

2MB Lx Scratchpad
192 + 192 GB/s R+W

…

2-D compute array

Core I/O

CMU

• Throughput = 1.5 TFlOPs
• Density = 0.17 TFlOPs/mm2

• DLFloat FPUs are 20x
smaller than IBM 64b FPUs

B.Fleischer et al.., “A Scalable Multi-TeraOPS Deep Learning Processor Core for AI Training and Inference”
Symposium VLSI 2018

DLFLoat16
FPUs

FMA block diagram
• True 16-b pipeline with R, A, B, C in DLFloat

format

• 10-bit multiplier
• 6 radix-4 booth terms
• 3 stages of 3:2 CSAs

• 34-bit adder
• Simpler than 22-bit adder + 12-bit incrementor
• Designed as 32-bit adder with carry-in

• LZA over entire 34 bits

• Eliminating subnormals simplifies FPU logic
• Also eliminated special logic for signs, NaNs,

Infinities

A B C

R

Round nearest up rounding mode

LSB Guard Sticky RN-Up RN-down RN-even

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 1 0 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 1 0 1

1 1 1 1 1 1

• Table shows the rounding
decision (1 = increment, 0 =
truncate)

• For Round-nearest up, sticky
information need not be
preserved

à simplifies normalizer, rounder

FMA block diagram
A B C

RArea breakdown very different from typical
single- and double-precision FPUs!

DLFloat16 FPU is 20X smaller compared to IBM
double-precision FPUs

Conclusions
• Demonstrated a 16-bit floating point format optimized for Deep

Learning applications
• Lower overheads compared to IEEE-half precision FP and BFloat16

• Balanced exponent and mantissa width selection for best
range vs resolution trade-off

• allows straightforward substitution when FP16 FMA is employed
• enables hybrid FP8-FP16 FMA-based training algorithms

• Demonstrated ASIC core comprising of 512 DLFloat16-FPUs
• Reduced precision compute enables dense, power-efficient engine
• Excluding some IEEE-754 features results in a lean FPU implementation

Thank you!

http://www.research.ibm.com/artificial-intelligence/hardware
For more information on AI work at IBM Research, please go to

http://www.research.ibm.com/artificial-intelligence/hardware

Backup

PTB – chart 14

Training is sensitive to quantization in the last layer.
If the last layer is converted to FP16, training performance improves

FP8 training procedure

AXPY results are stochastically rounded to FP16

