DLFloat: A 16-b Floating Point format designed for Deep Learning Training and Inference

Ankur Agrawal, Silvia M. Mueller¹, Bruce Fleischer, Jungwook Choi, Xiao Sun, Naigang Wang and Kailash Gopalakrishnan

IBM TJ Watson Research Center; ¹IBM Systems Group

TRM Research AT

Background

- Deep Learning has shown remarkable success in tasks such has image and speech recognition, machine translation etc.
- Training deep neural networks requires **100s of ExaOps** of computations
	- Typically performed on a cluster of CPUs or GPUs
- Strong trend towards building specialized ASICs for Deep Learning inference and training
	- Reduced precision computation exploits the resiliency of these algorithms to reduce power consumption and bandwidth requirements

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Reduced Precision key to IBM's AI acceleration

- We showcased our 1.5 Tflop/s deep learning accelerator engine at VLSI'18, consisting of a 2D array of FP16 FPUs
- We also announced successful training of Deep networks using hybrid FP8-FP16 computation
- Both these breakthroughs rely on an optimized FP16 format designed for Deep Learning – **DLFloat**

IF.

2MB SRAM

 $dv = 2.85$ mr

SFU / LO-Y

PE Array

IBM's New Do-It-All Deep-Learning Chip

IBM's new chip is designed to do both high-precision learning and low-precision inference across the three main flavors of deep learning

nes **DESIGNI INES LOOC**

IBM Guns for 8-bit AI Breakthroughs

By Junko Yoshida, 12.03.18 0 9

N. Wang et al., NeurIPS'18

Outline

- Introduction
- DLFloat details
- Neural network training experiments
- Hardware design
- Conclusions

Proposed 16-b floating point format: DLFloat

Features:

- Exponent bias (b) = -31
- No sub-normal numbers to simplify FPU logic
- Unsigned zero
- Last binade isn't reserved for NaNs and infinity

Merged Nan-Infinity

- Observation: if one of the input operands to an FMA instruction is NaN or Infinity, the result is always NaN or infinity.
- We merge NaN and infinity into one symbol
	- Encountering Nan-infinity implies "something went wrong" and exception flag is raised
- Nan-infinity is unsigned (sign-bit is a don't care)

DLFloat Format and Instructions

- FP16 FMA Instruction: $R = C + A*B$
	- All operands are DLFloat16
	- Result is DLFloat16 with Round-nearest-up rounding-mode
- FP8 FMA instruction: $R = C + A^*B$
	- R, C : DLFloat16
	- A, B : DLFloat8 (8-bit floating point)

Comparison with other FP16 formats

- BFloat16 and IEEE-half FPUs employ a mixed-precision FMA instruction (16-b multiplication, 32-b addition) to prevent accumulation errors
	- Limited logic savings
- IEEE-half employs APEX technique in DL training to automatically find a suitable scaling factor to prevent overflows and underflows
	- Software overhead

Back-propagation with DLFloat16 engine

- All matrix operations are performed using DLFloat16 FMA instruction
- Only weight updates are performed using 32-b summation
- 2 copies of weights maintained, all other quantities stored only in DLFloat16 format

Results – comparison with Baseline (IEEE-32)

Comparison with other FP16 formats

- 0 5 10 15 20 25 30 $\frac{50}{0}$ 100 150 200 250 $>10^{10}$ **Perplexity** Training with Single Precision (FP32) Training with BFloat (1-8-7) Training with DLFloat (1-6-9) Training with IEEE-half (1-5-10) Training with IEEE-half (1-5-10) with APEX • In all experiments, inner-product accumulation done in 16-bits • IEEE half training does not converge unless APEX technique is applied • BFloat16 training converges with slight degradation in QoR
- DLFloat16 trained network

If the Settlem Memory (LSTM) network trained on
 indistinguishable from baseline expansion Tree Bank dataset for text generation Penn Tree Bank dataset for text generation

Training epoch

BFloat16 vs DLFloat16 – a closer look

- With only 7 fraction bits, BFloat16 is likely to introduce accumulation errors when performing large inner products
	- commonly encountered in language processing tasks
- We chose a popular language translation network, Transformer, and kept the precision of all layers at FP32 except the last layer that requires an inner product length of 42720
- Persistent performance gap if accumulation is performed in 16-bit precision

DLFloat accumulation enables FP8-training

- GFMM mult. : FP8
- GEMM accum. : FP16
- Weight update : FP16
- Hybrid FP8-FP16 has 2x bandwidth efficiency and 2x power efficiency over regular FP16, with no loss of accuracy over a variety of benchmark networks

(N. Wang et al., NeurIPS'18)

FP8 training with BFloat vs DLFloat accumulation

- FP8 FMA instruction: $R = C + A^*B$
	- R, C : DLFloat16
	- A, B : DLFloat8 (8-bit floating point)
	- 8b multiplication, 16b accumulation
- FP8 format is kept constant, FP16 format is DLFloat and BFloat
- DLFloat comes much closer to baseline than BFloat, thus is a better choice for accumulation format
	- Gap can be reduced by keeping last layer training in FP16, as is the case in previous slide

Long Short-term Memory (LSTM) network trained on Penn Tree Bank dataset for text generation Accumulation length = 10000

Using DLFloat in an AI Training and Inference ASIC

B.Fleischer et al.., "A Scalable Multi-TeraOPS Deep Learning Processor Core for AI Training and Inference" Symposium VLSI 2018

FMA block diagram

- True 16-b pipeline with R, A, B, C in DLFloat format
- 10-bit multiplier
	- 6 radix-4 booth terms
	- 3 stages of 3:2 CSAs
- 34-bit adder
	- Simpler than 22-bit adder + 12-bit incrementor
	- Designed as 32-bit adder with carry-in
- 17A over entire 34 bits
- Eliminating subnormals simplifies FPU logic
- Also eliminated special logic for signs, NaNs, Infinities

Round nearest up rounding mode

- Table shows the rounding decision (1 = increment, $0 =$ truncate)
- For Round-nearest up, sticky information need not be preserved
- \rightarrow simplifies normalizer, rounder

FMA block diagram

DLFloat16 FPU is 20X smaller compared to IBM double-precision FPUs

Conclusions

- Demonstrated a 16-bit floating point format optimized for Deep Learning applications
	- Lower overheads compared to IEEE-half precision FP and BFloat16
- Balanced exponent and mantissa width selection for best range vs resolution trade-off
	- allows straightforward substitution when FP16 FMA is employed
	- enables hybrid FP8-FP16 FMA-based training algorithms
- Demonstrated ASIC core comprising of 512 DLFloat16-FPUs
	- Reduced precision compute enables dense, power-efficient engine
	- Excluding some IEEE-754 features results in a lean FPU implementation

Thank you!

For more information on AI work at IBM Research, please go to

[http://www.research.ibm.com/artificial-intelligence/hardwar](http://www.research.ibm.com/artificial-intelligence/hardware)e

Backup

PTB – chart 14

FP8 training procedure

Figure 2: A diagram showing the precision settings for (a) three GEMM functions during forward and backward passes, and (b) three AXPY operations during a standard SGD weight update process.

AXPY results are stochastically rounded to FP16