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Reduced Precision key to IBM’s Al acceleration g

* We showcased our 1.5 Tflop/s deep learning
accelerator engine at VLSI’18, consisting of a
2D array of FP16 FPUs

* We also announced successful training of
Deep networks using hybrid FP8-FP16

computation

* Both these breakthroughs rely on an
optimized FP16 format designed for
Deep Learning — DLFloat

B. Fleischer et al., VLSI’18
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IBM’s New Do-It-All Deep-Learning
Chip

IBM's new chip is designed to do both high-precision
learning and low-precision inference across the three
main flavors of deep learning
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Proposed 16-b floating point format: DLFloat

s exponent e (6-bit) fraction m (9-bit)

m
X=-15 x2(¢7D) s (1 + =15)
Features:
* Exponent bias (b) =-31
* No sub-normal numbers to simplify FPU logic
* Unsigned zero
 Last binade isn’t reserved for NaNs and infinity



Merged Nan-Infinity

* Observation: if one of the input operands to an FMA instruction is
NaN or Infinity, the result is always NaN or infinity.

* We merge NaN and infinity into one symbol

* Encountering Nan-infinity implies “something went wrong” and exception flag
is raised

* Nan-infinity is unsigned (sign-bit is a don’t care)



DLFloat Format and Instructions
Exponent  [Fraction  |vale

000000 000000000 0

000000 I=000000000 231 %1 f
000001 ... 111110 * 28 * 1.f
111111 I=111111111 232% 1 f
111111 111111111 Nan-infinity

* FP16 FMA Instruction: R=C+ A*B

* All operands are DLFloat16
* Result is DLFloat16 with Round-nearest-up rounding-mode

* FP8 FMA instruction: R=C + A*B

* R, C: DLFloatl6
* A, B : DLFloat8 (8-bit floating point)



Comparison with other FP16 formats

Smallest Largest
Total
representable representable
bit-width
number number

BFloat16 27(-133) 27(128)-ulp
|IEEE-half 5 10 16 27(-24) 27(16)-ulp
DLFloat A * A

. 6 9 16 27(-31)*+ulp 27(33)-2ulp

* BFloat16 and IEEE-half FPUs employ a mixed-precision FMA instruction
(16-b multiplication, 32-b addition) to prevent accumulation errors
* Limited logic savings

 |[EEE-half employs APEX technique in DL training to automatically find a
suitable scaling factor to prevent overflows and underflows
 Software overhead



Back-propagation with DLFloat16 engine

I I

* All matrix operations are Activation ! ———— ) ————— Activation \*
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Results — comparison with Baseline (IEEE-32)

(a) DNN (BN50) (Speech) (b) ResNet32 (CIFAR10) (Image)
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Comparison with other FP16 formats

* In all experiments, inner-product >10']
accumulation done in 16-bits :
250

* IEEE half training does not > 200

converge unless APEX technique is g

applied & 150!
o _ 100
* BFloat16 training converges with |
slight degradation in QoR !

* DLFloat16 trained network
indistinguishable from baseline

=@==Training with Single Precision (FP32)
=== Training with BFloat (1-8-7)

Training with DLFloat (1-6-9)
=8=Training with IEEE-half (1-5-10) ]
=== Training with IEEE-half (1-5-10) with APEX |
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Training epoch

30

Long Short-term Memory (LSTM) network trained on
Penn Tree Bank dataset for text generation



BFloatl16 vs DLFloat16 —

a closer look

* With only 7 fraction bits, BFloat16 is likely to
introduce accumulation errors when
performing large inner products

* commonly encountered in language processing
tasks

* We chose a popular language translation
network, Transformer, and kept the precision
of all layers at FP32 except the last layer that
requires an inner product length of 42720

* Persistent performance gap if accumulation is

performed in 16-bit precision

Transformer-base on WMT14 En-De
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— Training with DLFloat (1-6-9) in last layer
—— Training with BFloat ( 1-8-7) in last layer | ]
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Training epoch

— Training with DLFloat (1-6-9) in last layer
—— Training with BFloat (1-8-7) in last layer | |
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DLFloat accumulation enables FP8-training

s GEMM mult. : FPS8
* GEMM accum. : FP16
* Weight update : FP16

* Hybrid FP8-FP16 has 2x
bandwidth efficiency
and 2x power efficiency
over regular FP16, with
no loss of accuracy over
a variety of benchmark
networks

(N. Wang et al., NeurlPS’18)
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FP& training with BFloat vs DLFloat accumulation

* FP8 FMA instruction: R=C+ A*B
* R, C: DLFloatl6
* A, B : DLFloat8 (8-bit floating point)

* 8b multiplication, 16b accumulation

* FP8 format is kept constant,

FP16 format is DLFloat and BFloat

 DLFloat comes much closer to

baseline than BFloat, thus is a better

choice for accumulation format

* Gap can be reduced by keeping last layer training

in FP16, as is the case in previous slide

Perplexity
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Long Short-term Memory (LSTM) network trained on
Penn Tree Bank dataset for text generation
Accumulation length = 10000



Using DLFloat in an Al Training and Inference ASIC
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FMA block diagram

* True 16-b pipeline with R, A, B, Cin DLFloat
format

e 10-bit multiplier
* 6 radix-4 booth terms
* 3 stages of 3:2 CSAs

e 34-bit adder

* Simpler than 22-bit adder + 12-bit incrementor
* Designed as 32-bit adder with carry-in

e LZA over entire 34 bits

* Eliminating subnormals simplifies FPU logic

* Also eliminated special logic for signs, NaNs,
Infinities
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Round nearest up rounding mode

| Ls8
+ Table shows the rounding | LsB_| Guard | Sticky _RN-Up | RN-down | RN-even_
0 0 0 0

decision (1 = increment, 0 =

0 0 0

truncate) @
0 0

@ 6

* For Round-nearest up, sticky
information need not be
preserved

P =, = B, O O O O
 », O O +» +» O O

R O kR O Rk O Kk
R B, O O

- simplifies normalizer, rounder



FMA block diagram

DLFloat16 FPU is 20X smaller compared to IBM
double-precision FPUs

FPU Area Breakdown

k

FP16_multiplier

Area breakdown very different from typical
single- and double-precision FPUs!
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Conclusions

 Demonstrated a 16-bit floating point format optimized for Deep
Learning applications
* Lower overheads compared to IEEE-half precision FP and BFloat16

* Balanced exponent and mantissa width selection for best
range vs resolution trade-off

* allows straightforward substitution when FP16 FMA is employed
* enables hybrid FP8-FP16 FMA-based training algorithms

* Demonstrated ASIC core comprising of 512 DLFloat16-FPUs
* Reduced precision compute enables dense, power-efficient engine
* Excluding some IEEE-754 features results in a lean FPU implementation



Thank youl!

For more information on Al work at IBM Research, please go to
http://www.research.ibm.com/artificial-intelligence/hardware
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Hardware for Al

Much of today’s computation remains tied to
hardware built for spreadsheets and databases.
When used for Al it is power-hungry and inefficient.
IBM is pushing the physics of AFto deliver radical

improvement over the nextdecade, with innovation

and co-development from algorithms to systems to
devices.

Exploring the future of AI -
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PTB — chart 14

pytorch-R LSTM-PTB medium

220 - baseline
™ min val ppl: 87.35
All layers: data prec FP8 152, acc prec BFloat 187, Last FC layer: all BFloat 187
200 - min val ppl: 91.31
RNN layers: data prec FP8 152, acc prec DLFloat 169, Last FC layer: all DLFloat 169
min val ppl: 87.75
180 | . . . . . . . .
Training is sensitive to quantization in the last layer.
> . _ .
= If the last layer is converted to FP16, training performance improves
o 160
[
(]
Q
T 140
120 1
100 1




FP& training procedure

I .
FP16 weight decay
——— FP8 ! s .
Activation* FPs Z ; Activationt+*? == ;g';‘; =~ TI'eps "I
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Weight! - L e
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| _FP8 FPS | L1 | - F----- ===
Errort : Z T Errort+ M = | FP16 FP16 |
I omentum IFP16 AN I
\ _____ Backward GEMM , Gradient E—— ]
{ AXPY: Momentum !
L o - - . 1
' n T - /Iims |
. . FP8 ! !
Weight Gradient* : A Z g : [ FP16 ) FP161 Weight
1 I
: Gradient GEMM | (a) | AXPY: Weight update ! (b)

Figure 2: A diagram showing the precision settings for (a) three GEMM functions during forward
and backward passes, and (b) three AXPY operations during a standard SGD weight update process.

AXPY results are stochastically rounded to FP16



