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Background
• Deep Learning has shown remarkable success 

in tasks such has image and speech 
recognition, machine translation etc. 

• Training deep neural networks requires 
100s of ExaOps of computations

• Typically performed on a cluster of CPUs or GPUs

• Strong trend towards building specialized 
ASICs for Deep Learning inference and training

• Reduced precision computation exploits the 
resiliency of these algorithms to reduce power 
consumption and bandwidth requirements



Reduced Precision key to IBM’s AI acceleration  

• We showcased our 1.5 Tflop/s deep learning 
accelerator engine at VLSI’18, consisting of a 
2D array of FP16 FPUs 

• We also announced successful training of 
Deep networks using hybrid FP8-FP16 
computation

• Both these breakthroughs rely on an
optimized FP16 format designed for 
Deep Learning – DLFloat

B. Fleischer et al., VLSI’18

N. Wang et al., NeurIPS’18
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Proposed 16-b floating point format: DLFloat

Features:
• Exponent bias (b) = -31
• No sub-normal numbers to simplify FPU logic
• Unsigned zero
• Last binade isn’t reserved for NaNs and infinity

exponent e (6-bit) fraction m (9-bit)s

𝑋 = −1% ∗ 2()*+) ∗ (1 +
𝑚
512

)



Merged Nan-Infinity
• Observation: if one of the input operands to an FMA instruction is 

NaN or Infinity, the result is always NaN or infinity.

• We merge NaN and infinity into one symbol
• Encountering Nan-infinity implies “something went wrong” and exception flag 

is raised 

• Nan-infinity is unsigned (sign-bit is a don’t care)



DLFloat Format and Instructions
Exponent Fraction Value

000000 000000000 0

000000 != 000000000 2-31 * 1.f

000001 … 111110 * 2e * 1.f

111111 != 111111111 232 * 1.f

111111 111111111 Nan-infinity

• FP16 FMA Instruction:  R = C + A*B 
• All operands are DLFloat16 
• Result is DLFloat16 with Round-nearest-up rounding-mode

• FP8 FMA instruction: R = C + A*B 
• R, C : DLFloat16
• A, B : DLFloat8 (8-bit floating point)



Comparison with other FP16 formats

• BFloat16 and IEEE-half FPUs employ a mixed-precision FMA instruction 
(16-b multiplication, 32-b addition) to prevent accumulation errors

• Limited logic savings

• IEEE-half employs APEX technique in DL training to automatically find a 
suitable scaling factor to prevent overflows and underflows

• Software overhead

Format Exp 
bits

Frac 
bits

Total 
bit-width

Smallest 
representable

number

Largest 
representable 

number

BFloat16 8 7 16 2^(-133) 2^(128)-ulp

IEEE-half 5 10 16 2^(-24) 2^(16)-ulp

DLFloat
(proposed) 6 9 16 2^(-31)*+ulp 2^(33)-2ulp



Back-propagation with DLFloat16 engine

Error L

Weight_16
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FP16

FP16
FP16 Activation L+1

Backward GEMM

FP16

FP16

FP16
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Error L+1

Gradient GEMM
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gradientL FP16

FP16 FP16
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Apply Update
Weight_32

FP32

FP32

FP16
Weight_32 Weight_16FP32 Q(.)

• All matrix operations are 
performed using DLFloat16 
FMA instruction

• Only weight updates are 
performed using  32-b 
summation

• 2 copies of weights 
maintained, all other 
quantities stored only in 
DLFloat16 format

Steps in Backpropagation algorithmQ(.) = round nearest-up quantization 
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(a) DNN (BN50) (Speech)

Training with  Single Precision (FP32)
Training with DLFloat (FP16)
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(b) ResNet32 (CIFAR10) (Image)

Training with  Single Precision (FP32)
Training with DLFloat (FP16)
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(c) ResNet50 (Imagenet) (Image)

Training with  Single Precision (FP32)
Training with DLFloat (FP16)
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(d) AlexNet (Imagenet) (Image)

Training with  Single Precision (FP32)
Training with DLFloat (FP16)

Results – comparison with Baseline (IEEE-32)

• Trained network 
indistinguishable from 
baseline

• In our experiments, we 
did not need to adjust 
network hyper-parameters 
to obtain good 
convergence

• Allows application 
development to be 
decoupled from compute 
precision in hardware  



Comparison with other FP16 formats
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Training with IEEE-half (1-5-10) with APEX

• In all experiments, inner-product 
accumulation done in 16-bits

• IEEE half training does not 
converge unless APEX technique is 
applied

• BFloat16 training converges with 
slight degradation in QoR

• DLFloat16 trained network 
indistinguishable from baseline Long Short-term Memory (LSTM) network trained on 

Penn Tree Bank dataset for text generation



BFloat16 vs DLFloat16 –
a closer look 
• With only 7 fraction bits, BFloat16 is likely to 

introduce accumulation errors when 
performing large inner products

• commonly encountered in language processing 
tasks

• We chose a popular language translation 
network, Transformer, and kept the precision 
of all layers at FP32 except the last layer that 
requires an inner product length of 42720

• Persistent performance gap if accumulation is 
performed in 16-bit precision
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DLFloat accumulation enables FP8-training  
• GEMM mult.     : FP8
• GEMM accum.  : FP16
• Weight update  : FP16

• Hybrid FP8-FP16 has 2x 
bandwidth efficiency 
and 2x power efficiency 
over regular FP16, with 
no loss of accuracy over 
a variety of benchmark 
networks

(N. Wang et al., NeurIPS’18)



FP8 training with BFloat vs DLFloat accumulation
• FP8 FMA instruction: R = C + A*B 

• R, C : DLFloat16
• A, B : DLFloat8 (8-bit floating point)
• 8b multiplication, 16b accumulation

• FP8 format is kept constant, 
FP16 format is DLFloat and BFloat

• DLFloat comes much closer to 
baseline than BFloat, thus is a better 
choice for accumulation format

• Gap can be reduced by keeping last layer training 
in FP16, as is the case in previous slide
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Long Short-term Memory (LSTM) network trained on 
Penn Tree Bank dataset for text generation
Accumulation length = 10000



Using DLFloat in an AI Training and Inference ASIC
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• Throughput = 1.5 TFlOPs
• Density = 0.17 TFlOPs/mm2

• DLFloat FPUs are 20x 
smaller than IBM 64b FPUs

B.Fleischer et al.., “A Scalable Multi-TeraOPS Deep Learning Processor Core for AI Training and Inference” 
Symposium VLSI 2018

DLFLoat16 
FPUs



FMA block diagram
• True 16-b pipeline with R, A, B, C in DLFloat

format

• 10-bit multiplier 
• 6 radix-4 booth terms
• 3 stages of 3:2 CSAs

• 34-bit adder 
• Simpler than 22-bit adder + 12-bit incrementor
• Designed as 32-bit adder with carry-in

• LZA over entire 34 bits

• Eliminating subnormals simplifies FPU logic
• Also eliminated special logic for signs, NaNs, 

Infinities

A B C

R



Round nearest up rounding mode

LSB Guard Sticky RN-Up RN-down RN-even

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 1 0 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 1 0 1

1 1 1 1 1 1

• Table shows the rounding 
decision (1 = increment, 0 = 
truncate) 

• For Round-nearest up, sticky 
information need not be 
preserved

à simplifies normalizer, rounder



FMA block diagram
A B C

RArea breakdown very different from typical 
single- and double-precision FPUs!

DLFloat16 FPU is 20X smaller compared to IBM 
double-precision FPUs



Conclusions
• Demonstrated a 16-bit floating point format optimized for Deep 

Learning applications
• Lower overheads compared to IEEE-half precision FP and BFloat16

• Balanced exponent and mantissa width selection for best 
range vs resolution trade-off

• allows straightforward substitution when FP16 FMA is employed
• enables hybrid FP8-FP16 FMA-based training algorithms

• Demonstrated ASIC core comprising of 512 DLFloat16-FPUs
• Reduced precision compute enables dense, power-efficient engine
• Excluding some IEEE-754 features results in a lean FPU implementation



Thank you!

http://www.research.ibm.com/artificial-intelligence/hardware
For more information on AI work at IBM Research, please go to

http://www.research.ibm.com/artificial-intelligence/hardware


Backup



PTB – chart 14 

Training is sensitive to quantization in the last layer. 
If the last layer is converted to FP16, training performance improves



FP8 training procedure

AXPY results are stochastically rounded to FP16


