PRECISE AND CONCISE GRAPHICAL REPRESENTATION OF THE NATURAL NUMBERS
 David W. Matula and Zizhen Chen
 \{matula, zizhenc\}@smu.edu
 Southern Methodist University

A GRAPHIC IS WORTH A THOUSAND DIGITS

NAMING NUMBERS

Cultural

$$
\begin{gathered}
\text { 五十 } \\
\text { ごじゅう } \\
\text { 오십 } \\
\text { पचास } \\
\quad \text { L }
\end{gathered}
$$

正正正正正正正正正正

What＇s so special ahout＂50＂？
［It＇s a round number？？］

 勝 H

Natural

五十
 ごじゅう 오십
 पचास
 L

Why is divisible by 10 so special？

ARITH SYMPOSIUM From Ist to 26th

NAMING NUMBERS

Cultural

四十九	五十
よんじゅ	ごじゅう
사십구	오십
उनचास	पचास
XLIX	L
49	50
Step from 49 to 50	

［Protocol or Obvious？？］

Natural

誛 H K H H侎 IIII

Digit thitt strings suggest??

ROOTED TREES NATURAL NUMBERS ONE to ${ }^{\text {ONE }}$!

Fundamentals of Arithmetic

- Theorem: Unique Prime Factorization
- Operation: Counting (i th prime p_{i})
- Procedure: Recursion (finite stopping rule)

ONE-TO-ONE CORRESPONDENCE

A Natural Procedure Over Natural Numbers

ROOTED TREES NATURAL NUMBERS ONE to ${ }^{\text {ONE }}$!

Fundamentals of Arithmetic

- Theorem: Unique Prime Factorization
- Operation: Counting (i th prime p_{i})
- Procedure: Recursion (finite stopping rule)

Let's take a look...

C	
O	Structural-e.g. Digital 7 (linear)
N	
C	Number Fonts
I	
S	Artistic-e.g.Chinese, etc. (2D)
E	
P	Integer $<=>$ One Tree
R	Rational Fraction $<=>$ Two Trees
E	Continued Fraction $<=>$ Sequence of Trees
C	
I	Reals by "Best Rational Approximation"
S	

STRUCTURAL FONTS Decimal Digits us. Rooted Trees

0123455789

(a) digits in the Digital-7 font

(b) counts $1,2,3, \ldots, 9$ in a square grid font

(c) compressed square grid font for selecting counts 9-14 and 17

FIRST 21 PARTIAL QUOTIENTS

Everyone looks at

(a) Digital-7 font

(b) square grid font

RATIONAL FRACTION FORM

Continued Fraction
(10 partial quotients)

Rational Fraction (reduced)
1146408/364913
=3.14159265358...
"correct digits"

MULTIPLICATION IS VISUAL

EQUIVALENCE RELATION

$\left[j\left(p_{i}\right)\right]\left[i\left(p_{j}\right)\right]$

$\left[j\left(p_{i}\right)\right]$ i $\left[i\left(p_{j}\right)\right]$

