EXPERRIMENTALANALYSSS OF MATRAX MULTIPILICATION FUNGTIONAL UNIIS

Brian Hickmann, Dennis Bradford

Motivation

- Al is driving development of several new matrix-multiplication accelerators
- However, IEEE 754 standard gives significant implementation-specific flexibility in its definition of the dot product operation
- Summation order
- Internal format width
- Rounding points
- Exception reporting
- Accelerator microarchitecture details are typically not well documented
- This work details a series of experiments that can be used to better understand the design of these accelerators
- Exploit above flexibility to gain insight into design
- Applied this method to Tensor Core within NVIDIA V100 GPUs

Methodology

- Wanted to investigate several properties of the design:
- NaN/Exception Behavior?
- Rounding modes / locations?
- How is the accumulator integrated?
- Internal precision width?
- Order of operations?
- Interconnection of design units?
- First explored available documentation to understand:
- What is the SW interface?
- What is the smallest design unit?
- Next we designed several rounds of experiments to try to answer each question
- Test vectors always permuted values across all inputs to understand any ordering dependencies

Test Vector Examples

Question	Test
Order of operations?	$2^{30}+-2^{30}+2^{-14}$ or $\operatorname{Big}+-\mathrm{Big}+$ Small Depending on operation order, expect 0.0 or 2^{-14} as result Internal precision? $2^{30}+2^{N}$ where N in $\{30,-28\}$ Expect 2^{N} to disappear at edge of datapath width Rounding points and modes? Selected products to create various " L ", " R ", and " S " bits with both positive and negative results. Accumulator ordering and rounding? Repeated above testing, introducing C accumulator value to understand order of summation and rounding. \mathbf{l}

Volta Tensor Cores

- Each Tensor core performs matrix multiply-accumulate or dotproduct operation
- Input data size is FP16, accumulator is FP16 or FP32
- Exposed through CUDA "wmma" instruction
- $16 \times 16,4 \times 32$, and 32×4 matrices supported
- Wrote test software using 16×16 matrix size
- Initial testing done on smallest 4-input dot product element:
- $D_{0}=a_{3}{ }^{*} b_{3}+a_{2}{ }^{*} b_{2}+a_{1}{ }^{*} b_{1}+a_{0}{ }^{*} b_{0}+C_{0}$

$D=$	Ano	A.	A,	A.
	A_{1}	An	A A^{2}	A_{4}
	A_{0}	$A_{\text {ar }}$,	$A_{1} A_{2}$	A A_{2}
	A_{10}	A.	A_{2}	A_{1}
FP16 or FP32			P16	

Test Vector Examples

Question	Test
Order of operations?	$2^{30}+-2^{30}+2^{-14}$ or Big + -Big + Small Depending on operation order, expect 0.0 or 2^{-14} as result Internal precision?$2^{30}+-2^{30}+2^{\mathrm{N}}$ where N in $\{30,-28\}$ Expect 2^{N} to disappear at edge of datapath width Rounding points and modes? Selected products to create various "L", "R", and " S " bits with both positive and negative results. Accumulator ordering and handling?Repeated above testing, introducing C accumulator value to understand order of summation and rounding.

Possible Micro-Architectures - Chain of FMAs

Possible Micro-Architectures - Tree of FP Adds

Possible Micro-Architectures - Tree of INT Adds

Test Vector Examples

$\left.\begin{array}{|l|l|}\hline \text { Question } & \text { Test } \\ \hline \text { Order of operations? } & \begin{array}{l}2^{30}+-2^{30}+2^{-14} \text { or Big }+- \text { Big }+ \text { Small } \\ \text { Depending on operation order, expect } 0.0 \text { or } 2^{-14} \text { as result } \\ \hline \text { Internal precision? } \\ \hline \begin{array}{l}2^{30}+-2^{30}+2^{N} \text { where } N \text { in }\{30,-28\} \\ \text { Expect } 2^{N} \text { to disappear at edge of datapath width }\end{array} \\ \hline \begin{array}{l}\text { Rounding points and } \\ \text { modes? }\end{array} \\ \hline \begin{array}{l}\text { Selected products to create various " } L \text { ", "R", and " } S \text { " bits } \\ \text { with both positive and negative results. }\end{array} \\ \hline \text { and handling? }\end{array} \\ \hline\end{array} \begin{array}{l}\text { Repeated above testing, introducing } C \text { accumulator with } \\ \text { critical values to understand order of summation and } \\ \text { rounding. }\end{array}\right]$

Internal Datapath Width Experimental Results

Test Vector Examples

Question	Test
Order of operations?	$2^{30}+-2^{30}+2^{-14}$ or $\operatorname{Big}+-\mathrm{Big}+$ Small Depending on operation order, expect 0.0 or 2^{-14} as result Internal precision? $2^{30}+-2^{30}+2^{N}$ where N in $\{30,-28\}$ Expect 2^{N} to disappear at edge of datapath width Rounding points and modes? Selected products to create various " L ", " R ", and " S " bits with both positive and negative results. Accumulator ordering and handling?Repeated above testing, introducing C accumulator value to understand order of summation and rounding.

Best Estimate of Tensor Core Microarchitecture

- FP32 Round Test: $+/-\left(1.0+2^{-23}+2^{-24}\right)$
- No round up, so result truncated
- Integer overflow test: +/- $\left(1.0+1.0+2^{-23}+2^{-24}\right)$
- Result is normalized and truncated to 24 b
- $2^{\text {nd }}$ rounding point for FP32
- FP16 Round Test: $+/-\left(1.0+2^{-10}+2^{-11}\right)$
- Indicates FP16 results use RNE
- FP16 Datapath width: $+/-\left(1.0+2^{-10}+2^{N}\right)$
- 2^{N} in $\{-12,-30\}$, sticky bit for rounding
- Sticky bit truncated off at 24 b.

Test Vector Examples

Question	Test
Order of operations?	$2^{30}+-2^{30}+2^{-14}$ or Big +- Big + Small Depending on operation order, expect 0.0 or 2^{-14} as result
Internal precision?	$2^{30}+2^{30}+2^{N}$ where N in $\{30,-28\}$ Expect 2^{N} to disappear at edge of datapath width
Rounding points and modes?	Selected products to create various " L ", " R ", and " S " bits with both positive and negative results.
Accumulator ordering and handling?	Repeated above testing, introducing C accumulator value to understand order of summation and rounding. Also expanded testing to full 16×16 matrix

Best Estimate of Tensor Core Microarchitecture

Conclusions / Future Work

- Described a testing methodology that uses software visible inputs/outputs to explore a matrix multiplication unit microarchitecture
- Iterative testing exploits rounding modes and order of operations to gain insight into design
- Applied the methodology to Tensor Core units in NVIDIA V100 GPU
- By analyzing many rounds of testing, we were able to synthesize a detailed estimate of the design microarchitecture.
- In future work we would like to this same methods to other designs, such as Google's TPU

Results - Internal Architecture

- FP16 results are rounding using Round to Nearest Even
- FP16 subnormals correctly handled
- FP32 results are rounded using truncation (Round to Zero)
- FP32 subnormals NOT correctly handled, flushed to zero
- Internal Architecture is NOT chain of FMAs or tree of FP adders
- FP32 Test vector (products): $2^{30}+-2^{30}+2^{-14}$ or $\mathrm{Big}+-\mathrm{Big}+$ small
- Expect result of 0.0 or 2^{-14} depending on order of summation and rounding.
- Tensor Core results were always 0.0, which implies no internal rounding.
- Internal datapath width is truncated to 24 bits, even if integer overflow
- By varying the exponent difference between largest and smallest product, we found that all bits after the $24^{\text {th }}$ bit were truncated (not rounded) away.

Results - Top-level Architecture

- Testing for interconnection between dot-product units
- Expanded testing to all 16 elements of $A=\left[a_{0} . . a_{15}\right]$ and $B=\left[b_{0} . . b_{15}\right]$ inputs
- Call each dot-product result T_{0}, T_{1}, T_{2}, and $T_{3}\left(T_{0}=\left[a_{0}, a_{1}, a_{2}, a_{3}\right] *\left[b_{0}, b_{1}, b_{2}, b_{3}\right]\right)$
- FP16: Tensor results always rounded using RNE
- FP32: Tensor results rounded with RNE or with truncation
- Division found when inputs permuted between groups $\left(T_{0}, T_{1}\right)$ and $\left(T_{2}, T_{3}\right)$
- Implies that intermediate summation results are added with products directly
- C Matrix always added to result using RNE
- Summation order is: $\left(C_{0}+\left(T_{0}+T_{1}\right)\right)+\left(T_{2}+T_{3}\right)$

