
Brian Hickmann, Dennis Bradford

2

Motivation

• AI is driving development of several new matrix-multiplication accelerators

• However, IEEE 754 standard gives significant implementation-specific
flexibility in its definition of the dot product operation

• Summation order

• Internal format width

• Accelerator microarchitecture details are typically not well documented

• This work details a series of experiments that can be used to better
understand the design of these accelerators

• Exploit above flexibility to gain insight into design

• Applied this method to Tensor Core within NVIDIA V100 GPUs

• Rounding points

• Exception reporting

3

Methodology

• Wanted to investigate several properties of the design:

• NaN/Exception Behavior?

• Rounding modes / locations?

• How is the accumulator integrated?

• First explored available documentation to understand:

• What is the SW interface?

• Next we designed several rounds of experiments to try to answer each question

• Test vectors always permuted values across all inputs to understand any ordering
dependencies

• Internal precision width?

• Order of operations?

• Interconnection of design units?

• What is the smallest design unit?

4

Test Vector Examples

Question Test

Order of operations? 230 + -230 + 2-14 or Big + -Big + Small
Depending on operation order, expect 0.0 or 2-14 as result

Internal precision? 230 + 2N where N in {30,-28}
Expect 2N to disappear at edge of datapath width

Rounding points and
modes?

Selected products to create various “L”, “R”, and “S” bits
with both positive and negative results.

Accumulator ordering
and rounding?

Repeated above testing, introducing C accumulator value to
understand order of summation and rounding.

5

Volta Tensor Cores

• Each Tensor core performs matrix multiply-accumulate or dot-
product operation

• Input data size is FP16, accumulator is FP16 or FP32

• Exposed through CUDA “wmma” instruction

• 16x16, 4x32, and 32x4 matrices supported

• Wrote test software using 16x16 matrix size

• Initial testing done on smallest 4-input dot product element:

• D0 = a3*b3 + a2*b2 + a1*b1 + a0*b0 + C0

*Images from Volta Whitepaper

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

6

Test Vector Examples

Question Test

Order of operations? 230 + -230 + 2-14 or Big + -Big + Small
Depending on operation order, expect 0.0 or 2-14 as result

Internal precision? 230 + -230 + 2N where N in {30,-28}
Expect 2N to disappear at edge of datapath width

Rounding points and
modes?

Selected products to create various “L”, “R”, and “S” bits
with both positive and negative results.

Accumulator ordering
and handling?

Repeated above testing, introducing C accumulator value to
understand order of summation and rounding.

7

Possible Micro-Architectures – Chain of FMAs

FMA

a0b0

FMA

a1b1

FMA

a2b2

FMA

a3b3

D0

No Rounding

Output Rounded

Test 1: 230 + -230 + 2-14 + 0 = 2-14

Test 2: 2-14 + 0 + 230 + -230 = 0

8

Possible Micro-Architectures – Tree of FP Adds

MULT

a0b0

MULT

a1b1

MULT

a2b2

MULT

a3b3

D0

FP
ADD

FP
ADD

FP
ADD

No Rounding

Output Rounded

Test 1: 230 + -230 + 2-14 + 0 = 2-14

Test 2: 2-14 + 230 + 0 + -230 = 0

9

Possible Micro-Architectures – Tree of INT Adds

MULT

a0b0

MULT

a1b1

MULT

a2b2

MULT

a3b3

Int
ADD

4:2 Compress

ALIGN and Round/Truncate

No Rounding

Output Rounded

Test 1: 230 + -230 + 2-14 + 0 = 0

Test 2: 2-14 + 230 + 0 + -230 = 0

D0

10

Test Vector Examples

Question Test

Order of operations? 230 + -230 + 2-14 or Big + -Big + Small
Depending on operation order, expect 0.0 or 2-14 as result

Internal precision? 230 + -230 + 2N where N in {30,-28}
Expect 2N to disappear at edge of datapath width

Rounding points and
modes?

Selected products to create various “L”, “R”, and “S” bits
with both positive and negative results.

Accumulator ordering
and handling?

Repeated above testing, introducing C accumulator with
critical values to understand order of summation and
rounding.

11

Internal Datapath Width Experimental Results

MULT

a0b0

MULT

a1b1

MULT

a2b2

MULT

a3b3

Int
ADD

4:2 Compress (24b)

ALIGN and Round/Truncate to 24b

No Rounding

Output Rounded

Test (N=7): 230 + -230 + 27 + 0 = 27

D0

Test (N=6): 230 + -230 + 26 + 0 = 0

12

Test Vector Examples

Question Test

Order of operations? 230 + -230 + 2-14 or Big + -Big + Small
Depending on operation order, expect 0.0 or 2-14 as result

Internal precision? 230 + -230 + 2N where N in {30,-28}
Expect 2N to disappear at edge of datapath width

Rounding points and
modes?

Selected products to create various “L”, “R”, and “S” bits
with both positive and negative results.

Accumulator ordering
and handling?

Repeated above testing, introducing C accumulator value to
understand order of summation and rounding.

13

Best Estimate of Tensor Core Microarchitecture

MULT

a0b0

MULT

a1b1

MULT

a2b2

MULT

a3b3

Int
ADD

4:2 Compress

ALIGN and Truncate (24b)

Normalize / Truncate (24b)

Round
FP16

a4b4 a5b5 a6b6 a7b7

D0

• FP32 Round Test: +/- (1.0 + 2-23 + 2-24)

• No round up, so result truncated

• Integer overflow test: +/- (1.0 +1.0 + 2-23 + 2-24)

• Result is normalized and truncated to 24b

• 2nd rounding point for FP32

• FP16 Round Test: +/- (1.0 + 2-10 + 2-11)

• Indicates FP16 results use RNE

• FP16 Datapath width: +/- (1.0 + 2-10 + 2N)

• 2N in {-12, -30}, sticky bit for rounding

• Sticky bit truncated off at 24b.

14

Test Vector Examples

Question Test

Order of operations? 230 + -230 + 2-14 or Big + -Big + Small
Depending on operation order, expect 0.0 or 2-14 as result

Internal precision? 230 + -230 + 2N where N in {30,-28}
Expect 2N to disappear at edge of datapath width

Rounding points and
modes?

Selected products to create various “L”, “R”, and “S” bits
with both positive and negative results.

Accumulator ordering
and handling?

Repeated above testing, introducing C accumulator value to
understand order of summation and rounding.
Also expanded testing to full 16x16 matrix

15

Best Estimate of Tensor Core Microarchitecture

MULT

a0b0

MULT

a1b1

MULT

a2b2

MULT

a3b3

C0

Int
ADD

5:2 Compress

ALIGN and Truncate (24b)

Normalize / Truncate (24b)

Round
FP16

a4b4 a5b5 a6b6 a7b7

FP
ADD

MULT

a8b8

MULT

a9b9

MULT

a10b10

MULT

a11b11

Int
ADD

5:2 Compress

ALIGN and Truncate (24b)

Normalize / Truncate (24b)

Round
FP16

a12b12 a13b13 a14b14 a15b15

FP
ADD

D0

16

Conclusions / Future Work

• Described a testing methodology that uses software visible inputs/outputs to
explore a matrix multiplication unit microarchitecture

• Iterative testing exploits rounding modes and order of operations to gain
insight into design

• Applied the methodology to Tensor Core units in NVIDIA V100 GPU

• By analyzing many rounds of testing, we were able to synthesize a detailed
estimate of the design microarchitecture.

• In future work we would like to this same methods to other designs, such as
Google’s TPU

18

Results – Internal Architecture
• FP16 results are rounding using Round to Nearest Even

• FP16 subnormals correctly handled

• FP32 results are rounded using truncation (Round to Zero)

• FP32 subnormals NOT correctly handled, flushed to zero

• Internal Architecture is NOT chain of FMAs or tree of FP adders

• FP32 Test vector (products): 230 + -230 + 2-14 or Big + -Big + small

• Expect result of 0.0 or 2-14 depending on order of summation and rounding.

• Tensor Core results were always 0.0, which implies no internal rounding.

• Internal datapath width is truncated to 24 bits, even if integer overflow

• By varying the exponent difference between largest and smallest product, we found that all bits
after the 24th bit were truncated (not rounded) away.

19

Results – Top-level Architecture

• Testing for interconnection between dot-product units

• Expanded testing to all 16 elements of A=[a0..a15] and B=[b0..b15] inputs

• Call each dot-product result T0, T1, T2, and T3 (T0 = [a0, a1, a2, a3] * [b0, b1, b2, b3])

• FP16: Tensor results always rounded using RNE

• FP32: Tensor results rounded with RNE or with truncation

• Division found when inputs permuted between groups (T0, T1) and (T2, T3)

• Implies that intermediate summation results are added with products directly

• C Matrix always added to result using RNE

• Summation order is: (C0 + (T0 + T1)) + (T2 + T3)

