

EXPERIMENTAL ANALYSIS OF MATRIX MULTIPLICATION FUNCTIONAL UNITS Brian Hickmann, Dennis Bradford

Motivation

- AI is driving development of several new matrix-multiplication accelerators
- However, IEEE 754 standard gives significant implementation-specific flexibility in its definition of the dot product operation
 - Summation order

• Rounding points

• Internal format width

- Exception reporting
- Accelerator microarchitecture details are typically not well documented
- This work details a series of experiments that can be used to better understand the design of these accelerators
 - Exploit above flexibility to gain insight into design
- Applied this method to Tensor Core within NVIDIA V100 GPUs

Methodology

- Wanted to investigate several properties of the design:
 - NaN/Exception Behavior?
 - Rounding modes / locations?
 - How is the accumulator integrated?

- Internal precision width?
- Order of operations?
- Interconnection of design units?
- First explored available documentation to understand:
 - What is the SW interface?

- What is the smallest design unit?
- Next we designed several rounds of experiments to try to answer each question
 - Test vectors always permuted values across all inputs to understand any ordering dependencies

Question	Test
Order of operations?	2 ³⁰ + -2 ³⁰ + 2 ⁻¹⁴ or Big + -Big + Small Depending on operation order, expect 0.0 or 2 ⁻¹⁴ as result
Internal precision?	2 ³⁰ + 2 ^N where N in {30,-28} Expect 2 ^N to disappear at edge of datapath width
Rounding points and modes?	Selected products to create various "L", "R", and "S" bits with both positive and negative results.
Accumulator ordering and rounding?	Repeated above testing, introducing C accumulator value to understand order of summation and rounding.

Volta Tensor Cores

- Each Tensor core performs matrix multiply-accumulate or dotproduct operation
 - Input data size is FP16, accumulator is FP16 or FP32
- Exposed through CUDA "wmma" instruction
 - 16x16, 4x32, and 32x4 matrices supported
 - Wrote test software using 16x16 matrix size
- Initial testing done on smallest 4-input dot product element:
 - $D_0 = a_3 b_3 + a_2 b_2 + a_1 b_1 + a_0 b_0 + C_0$

_								L1 Instruc	tion C	ache							
L0 Instruction Cache										L0 I	nstruc	tion C	ache				
Warp Scheduler (32 thread/clk)									Wa	rp Scl	nedule	r (32 t	hread	/clk)			
		Di	spatc	h Unit	(32 th	read/c	cik)				Di	spatc	h Unit	(32 th	read/	cik)	
Register File (16,384 x 32-bit)						Register File (16,384 x 32-bit)											
FP	64	INT	INT	FP32	FP32	F	H			FP64	INT	INT	FP32	FP32	F	H	-
FP	64	INT	INT	FP32	FP32					FP64	INT	INT	FP32	FP32	\square		
FP64		INT	INT	FP32	FP32	Ħ			FP64 FP64		INT	INT	FP32	FP32	Ħ		
FP	64	INT	INT	FP32	FP32	TENSOR		TENSOR			INT	INT	FP32	FP32 .	TEN	SOR	TENSO
FP64		INT	INT	FP32	FP32	CORE		CORE		FP64		INT	FP32	FP32 CORE		COR	
FP	64	INT	INT	FP32	FP32	Ħ				FP64	INT	INT	FP32	FP32	Ħ		
FP64		INT	INT	FP32	FP32	Ħ				FP64		INT	IT FP32	FP32	Ħ		
FP	64	INT	INT	FP32	FP32	Ħ				FP64	INT	INT	FP32	FP32	Ħ		
LD/	LD/	LD/	LD/	LD/	LD/	LD/	LD/	SFU	u	V LD/	LD/	LD/	LD/	LD/	LD/	LD/	SFU
51	51	51	51	51	51	51	31			1 31	31	51	51	51	51	51	
			L0 h	nstruc	tion C	ache						L0 h	nstruc	tion C	ache		
		Wai	rp Sch	nedule	r (32 t	hread	/clk)		Warp Scheduler (32 thread/clk)								
		Di	spatcl	h Unit	(32 th	read/o	cik)				Di	spatci	h Unit	(32 th	read/	cik)	
		Reg	ister	File ('	16,38	4 x 32	2-bit)		Register File (16,384 x 32-bit)								
FP	64	INT	INT	FP32	FP32	F				FP64	INT	INT	FP32	FP32	H		
FP	64	INT	INT	FP32	FP32					FP64			FP32	FP32	\vdash		
FP	64	INT	INT	FP32	FP32	\square				FP64	INT	INT	FP32	FP32	\square		
FP64		INT	INT	FP32	FP32	TENSOR		TENSOR		FP64		INT	FP32	FP32	TEN	SOR	TENS
FP64		INT	INT	FP32	FP32	CORE	ORE	CORE		FP64		INT	FP32	FP32	CC	ORE	COR
FP64		INT	INT	FP32	FP32	Ħ				FP64	INT	INT	FP32	FP32	Ħ		
FP64		INT	INT	FP32	FP32	Ħ				FP64	INT	INT	FP32	FP32	Ħ		
	FP64		INT	FP32	FP32					FP64	INT	INT	FP32	FP32	Ħ		
FP		LD/	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU	LC S ¹	V LD/ T ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU
FP LD/ ST		ST															
FPI LD/ ST	LD/ ST	ST					128K	B L1 Data Cac	he / Sl	hared M	lemon		_	_			_

Question	Test
Order of operations?	2 ³⁰ + -2 ³⁰ + 2 ⁻¹⁴ or Big + -Big + Small Depending on operation order, expect 0.0 or 2 ⁻¹⁴ as result
Internal precision?	2 ³⁰ + -2 ³⁰ + 2 ^N where N in {30,-28} Expect 2 ^N to disappear at edge of datapath width
Rounding points and modes?	Selected products to create various "L", "R", and "S" bits with both positive and negative results.
Accumulator ordering and handling?	Repeated above testing, introducing C accumulator value to understand order of summation and rounding.

Possible Micro-Architectures – Chain of FMAs

Possible Micro-Architectures – Tree of FP Adds

Possible Micro-Architectures – Tree of INT Adds

Question	Test
Order of operations?	2 ³⁰ + -2 ³⁰ + 2 ⁻¹⁴ or Big + -Big + Small Depending on operation order, expect 0.0 or 2 ⁻¹⁴ as result
Internal precision?	2 ³⁰ + -2 ³⁰ + 2 ^N where N in {30,-28} Expect 2 ^N to disappear at edge of datapath width
Rounding points and modes?	Selected products to create various "L", "R", and "S" bits with both positive and negative results.
Accumulator ordering and handling?	Repeated above testing, introducing C accumulator with critical values to understand order of summation and rounding.

Internal Datapath Width Experimental Results

Question	Test
Order of operations?	2 ³⁰ + -2 ³⁰ + 2 ⁻¹⁴ or Big + -Big + Small Depending on operation order, expect 0.0 or 2 ⁻¹⁴ as result
Internal precision?	$2^{30} + -2^{30} + 2^{N}$ where N in {30,-28} Expect 2^{N} to disappear at edge of datapath width
Rounding points and modes?	Selected products to create various "L", "R", and "S" bits with both positive and negative results.
Accumulator ordering and handling?	Repeated above testing, introducing C accumulator value to understand order of summation and rounding.

Best Estimate of Tensor Core Microarchitecture

- FP32 Round Test: +/- (1.0 + 2⁻²³ + 2⁻²⁴)
 - No round up, so result truncated
- Integer overflow test: +/- (1.0 + 1.0 + 2⁻²³ + 2⁻²⁴)
 - Result is normalized and truncated to 24b
 - 2nd rounding point for FP32
- FP16 Round Test: +/- (1.0 + 2⁻¹⁰ + 2⁻¹¹)
 - Indicates FP16 results use RNE
- FP16 Datapath width: +/- (1.0 + 2⁻¹⁰ + 2^N)
 - 2^{N} in {-12, -30}, sticky bit for rounding
 - Sticky bit truncated off at 24b.

Question	Test
Order of operations?	2 ³⁰ + -2 ³⁰ + 2 ⁻¹⁴ or Big + -Big + Small Depending on operation order, expect 0.0 or 2 ⁻¹⁴ as result
Internal precision?	$2^{30} + -2^{30} + 2^{N}$ where N in {30,-28} Expect 2^{N} to disappear at edge of datapath width
Rounding points and modes?	Selected products to create various "L", "R", and "S" bits with both positive and negative results.
Accumulator ordering and handling?	Repeated above testing, introducing C accumulator value to understand order of summation and rounding. Also expanded testing to full 16x16 matrix

Best Estimate of Tensor Core Microarchitecture

Conclusions / Future Work

- Described a testing methodology that uses software visible inputs/outputs to explore a matrix multiplication unit microarchitecture
 - Iterative testing exploits rounding modes and order of operations to gain insight into design
- Applied the methodology to Tensor Core units in NVIDIA V100 GPU
 - By analyzing many rounds of testing, we were able to synthesize a detailed estimate of the design microarchitecture.
- In future work we would like to this same methods to other designs, such as Google's TPU

Results – Internal Architecture

- FP16 results are rounding using Round to Nearest Even
 - FP16 subnormals correctly handled
- FP32 results are rounded using truncation (Round to Zero)
 - FP32 subnormals NOT correctly handled, flushed to zero
- Internal Architecture is NOT chain of FMAs or tree of FP adders
 - FP32 Test vector (products): 2³⁰ + -2³⁰ + 2⁻¹⁴ or Big + -Big + small
 - Expect result of 0.0 or 2⁻¹⁴ depending on order of summation and rounding.
 - Tensor Core results were always 0.0, which implies no internal rounding.
- Internal datapath width is truncated to 24 bits, even if integer overflow
 - By varying the exponent difference between largest and smallest product, we found that all bits after the 24th bit were truncated (not rounded) away.

Results – Top-level Architecture

- Testing for interconnection between dot-product units
 - Expanded testing to all 16 elements of A=[a₀..a₁₅] and B=[b₀..b₁₅] inputs
 - Call each dot-product result T₀, T₁, T₂, and T₃ (T₀ = [a₀, a₁, a₂, a₃] * [b₀, b₁, b₂, b₃])
- FP16: Tensor results always rounded using RNE
- FP32: Tensor results rounded with RNE or with truncation
 - Division found when inputs permuted between groups (T_0, T_1) and (T_2, T_3)
 - Implies that intermediate summation results are added with products directly
- C Matrix always added to result using RNE
- Summation order is: $(C_0 + (T_0 + T_1)) + (T_2 + T_3)$

