
Kumar Sambhav Pandey, Hitesh Shrimali, Dinesh Kumar B
School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi

Neeraj Goel
Department of Computer Science & Engineering, Indian Institute of Technology, Ropar

Friday, June 28, 2019



Friday, June 28, 2019



Friday, June 28, 2019 1

In the given instance 
unless the carry out 
from the least 
significant bit adder is 
produced, more 
significant bits cannot 
be computed (Carry 
Ripple Adders).

Can we compute all the sum bits in 

parrallel

?



Friday, June 28, 2019 2

Define two signals, carry generate (𝑔𝑖) and carry propagate (𝑝𝑖), which being local 
to each bit position can all be computed in parallel:
𝑔𝑖 = 𝑎𝑖 ⋅ 𝑏𝑖
𝑝𝑖 = 𝑎𝑖 + 𝑏𝑖

and one ancillary signal carry transmit (𝑡𝑖): 
𝑡𝑖 = 𝑎𝑖⨁𝑏𝑖

With these signals, it is trivial to compute Carry at bit position i+1 (𝐶𝑖+1) in terms 
of carry at bit at position i (𝐶𝑖) as:
𝐶𝑖+1 = 𝑔𝑖 + 𝑝𝑖 ⋅ 𝐶𝑖

and the sum at bit position i as:
𝑠𝑖 = 𝑡𝑖⨁𝐶𝑖



Friday, June 28, 2019 3

The first and the last stages are purely local in nature as they operate on signals 
only at their respective bit positions. Hence all of the bits can be operated upon 
concurrently. However, there is a data dependence between 𝐶𝑖+1 and 𝐶𝑖.

Define a special binary prefix operator (∘) on pairs of operands as:
𝑔𝑖
𝑝𝑖

∘
𝑔𝑗
𝑝𝑗

=
𝑔𝑖 + 𝑝𝑖 ⋅ 𝑔𝑗
𝑝𝑖 ⋅ 𝑝𝑗

Thus,
𝐶𝑖+1
𝑝𝑖

=
𝑔𝑗
𝑝𝑖

∘
𝐶𝑖
1



Friday, June 28, 2019 4

Obviously, therefore, Input carry at any bit position as a function of 𝐶𝑖𝑛 can thus 
be trivially computed using a sequence of the prefix operations (∘)s introduced 
before as:

𝐶𝑖+1
𝑝𝑖 ⋅ 𝑝𝑖−1 ⋅⋅⋅ 𝑝0

=
𝑔𝑖
𝑝𝑖

∘
𝑔𝑖−1
𝑝𝑖−1

⋅⋅⋅
𝑔0
𝑝0

∘
𝐶𝑖𝑛
1

Define group generate signal 𝑔𝑖⋅⋅⋅𝑗 and a group propagate signal 𝑝𝑖⋅⋅⋅𝑗 as:
𝑔𝑖⋅⋅⋅𝑗
𝑝𝑖⋅⋅⋅𝑗

=
𝑔𝑖
𝑝𝑖

∘
𝑔𝑖−1
𝑝𝑖−1

⋅⋅⋅
𝑔𝑗+1
𝑝𝑗+1

∘
𝑔𝑗
𝑝𝑗

Thus,
𝐶𝑖+1
𝑝𝑖⋅⋅⋅0

=
𝑔𝑖⋅⋅⋅0
𝑝𝑖⋅⋅⋅0

∘
𝐶𝑖𝑛
1



Friday, June 28, 2019 5

Two Important Properties:

• Associativity:

𝑔𝑖
𝑝𝑖

∘
𝑔𝑗
𝑝𝑗

∘
𝑔𝑘
𝑝𝑘

=
𝑔𝑖
𝑝𝑖

∘
𝑔𝑗
𝑝𝑗

∘
𝑔𝑘
𝑝𝑘

• Idempotency:

𝑔ℎ⋅⋅⋅𝑖
𝑝ℎ⋅⋅⋅𝑖

∘
𝑔𝑗⋅⋅⋅𝑘
𝑝𝑗⋅⋅⋅𝑘

=
𝑔ℎ⋅⋅⋅𝑘
𝑝ℎ⋅⋅⋅𝑘

provided, ℎ > 𝑖, 𝑖 ≤ 𝑗 + 1 and 𝑗 > 𝑘



Friday, June 28, 2019 6

∀𝑖 ≥ 0

𝑔𝑖, 𝑝𝑖and 𝑡𝑖are all 
computed in parallel. 

[1] A. Weinberger and J. Smith, “A logic for high-speed addition,” Nat. Bur. Stand. Circ., vol. 591, pp. 3–12, 1958.



Friday, June 28, 2019 7

Following are all 
computed in parallel:
𝑔1⋯0

𝑝1⋯0
=

𝑔1
𝑝1

°
𝑔0
𝑝0

𝑔2⋯1

𝑝2⋯1
=

𝑔2
𝑝2

°
𝑔1
𝑝1

𝑔3⋯2

𝑝3⋯2
=

𝑔3
𝑝3

°
𝑔2
𝑝2



Friday, June 28, 2019 8

Following are all 
computed in parallel:
𝑔2⋯0

𝑝2⋯0
=

𝑔2⋯1

𝑝2⋯1
°
𝑔0
𝑝0

𝑔3⋯0

𝑝3⋯0
=

𝑔3⋯2

𝑝3⋯2
°
𝑔1⋯0

𝑝1⋯0



Friday, June 28, 2019 9

Following are all 
computed in parallel:
𝐶1
𝑝0

=
𝑔0
𝑝0

°
𝐶𝑖𝑛
1

𝐶2
𝑝1⋯0

=
𝑔1⋯0

𝑝1⋯0
°
𝐶𝑖𝑛
1

𝐶3
𝑝2⋯0

=
𝑔2⋯0

𝑝2⋯0
°
𝐶𝑖𝑛
1

𝐶4
𝑝3⋯0

=
𝑔3⋯0

𝑝3⋯0
°
𝐶𝑖𝑛
1



Friday, June 28, 2019 10

∀𝑖 ≥ 0

𝑆𝑖 are all computed in 
parallel. 



Friday, June 28, 2019 11

A pseudo carry 𝐻𝑖 = 𝐶𝑖 + 𝐶𝑖−1 is propagated in lieu of the conventional carry 𝐶𝑖.

Conventional carries can be extracted from them by 𝐶𝑖 = 𝑝𝑖−1 ∙ 𝐻𝑖 as proved below:

𝑝𝑖−1 ∙ 𝐻𝑖

= 𝑝𝑖−1 ∙ 𝐶𝑖 + 𝐶𝑖−1

= 𝑝𝑖−1 ∙ 𝑔𝑖−1 + 𝑝𝑖−1 ∙ 𝐶𝑖−1 + 𝐶𝑖−1

= 𝑝𝑖−1 ∙ 𝑔𝑖−1 + 𝐶𝑖−1

= 𝑝𝑖−1 ∙ 𝑔𝑖−1 + 𝑝𝑖−1 ∙ 𝐶𝑖−1

= 𝑔𝑖−1 + 𝑝𝑖−1 ∙ 𝐶𝑖−1

= 𝐶𝑖

[2] H. Ling, “High-speed binary adder,” IBM Journal of Research and Development, vol. 25, no. 3, pp. 156–166, March 1981.



Friday, June 28, 2019 12

Define two more local signals ℎ𝑖 and 𝑞𝑖 as:

ℎ𝑖 = 𝑔𝑖 + 𝑔𝑖−1

and

𝑞𝑖 = 𝑝𝑖 ∙ 𝑝𝑖−1

Starting with the definition of 𝐻𝑖+1and the fact that 𝑔𝑖 ∙ 𝑝𝑖 = 𝑔𝑖:

𝐻𝑖+1

= 𝐶𝑖+1 + 𝐶𝑖

= 𝑔𝑖 + 𝑝𝑖 ∙ 𝐶𝑖 + 𝐶𝑖

= 𝑔𝑖 + 𝐶𝑖

= 𝑔𝑖 + 𝑔𝑖−1 + 𝑝𝑖−1 ∙ 𝑔𝑖−2 + 𝑝𝑖−2 ∙ 𝐶𝑖−2

= 𝑔𝑖 + 𝑔𝑖−1 + 𝑝𝑖−1 ∙ 𝑝𝑖−2 𝑔𝑖−2 + 𝐶𝑖−2

= ℎ𝑖 + 𝐻𝑖−1



Friday, June 28, 2019 13

In terms of the binary prefix operator defined before:
𝐻𝑖+1

𝑞𝑖−1
=

ℎ𝑖
𝑞𝑖−1

∘
𝐻𝑖−1

1

Ling carry (pseudo carry) at any bit position as a function of 𝐻𝑖𝑛 = 𝐶𝑖𝑛can thus be 
trivially computed by a sequence of prefix operations as:

𝐻𝑖+1

𝑞𝑖−1 ⋅ 𝑞𝑖−3 ⋅⋅⋅ 𝑞0
=

ℎ𝑖
𝑞𝑖−1

∘
ℎ𝑖−2
𝑞𝑖−3

⋅⋅⋅
𝐻𝑖𝑛

1

It is noted that ,

𝐻4 = ℎ3 + 𝑞2 ∙ ℎ1 + 𝑞2 ∙ 𝑞0 ∙ 𝐻𝑖𝑛

= 𝑔3 + 𝑔2 + 𝑝2 ∙ 𝑔1 + 𝑝2 ∙ 𝑝1 ∙ 𝑔0 + 𝑝2 ∙ 𝑝1 ∙ 𝑝0 ∙ 𝐶𝑖𝑛

which is logically much more simpler than the corresponding expression for the 
conventional carry 𝐶4:
𝐶4 = 𝑔3 + 𝑝3 ∙ 𝑔2 + 𝑝3 ∙ 𝑝2 ∙ 𝑔1 + 𝑝3 ∙ 𝑝2 ∙ 𝑝1 ∙ 𝑔0 + 𝑝3 ∙ 𝑝2 ∙ 𝑝1 ∙ 𝑝0 ∙ 𝐶𝑖𝑛



Friday, June 28, 2019 14

Following is an expansion of Ling recurrence relation for Ling pseudo carries for a 
radix-4 adder:

𝐻4

𝑞2 ∙ 𝑞0
=

ℎ3
𝑞2

°
ℎ1
𝑞0

°
𝐶𝑖𝑛
1

𝐻3

𝑞1
=

ℎ2
𝑞1

°
ℎ0
1

𝐻2

𝑞0
=

ℎ1
𝑞0

°
𝐶𝑖𝑛
1

𝐻1
1

=
ℎ0
1

𝐻0

1
=

𝐶𝑖𝑛
1

Dimitrakopoulos and Nikolos observed that in the above expansion the even and 
odd subscripted pseudo Ling carries are independent of each other.



Friday, June 28, 2019 15

[3] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel prefix VLSI Ling adders,” IEEE Transactions on Computers, vol. 54, 
no. 2, pp. 225–231, Feb 2005.



Friday, June 28, 2019 16

Jackson and Talwar generalized the Ling factorization to further speed up multi-
bit addition and proved that the relations for carries can be factorized even 
beyond what was established by Ling. 

For example, the expression for the conventional carry (𝐶4 ) can be further 
factorized as given below:

𝐶4

= 𝑔3 + 𝑝3 ∙ 𝑔2 + 𝑝3 ∙ 𝑝2 ∙ 𝑔1 + 𝑝3 ∙ 𝑝2 ∙ 𝑝1 ∙ 𝑔0 + 𝑝3 ∙ 𝑝2 ∙ 𝑝1 ∙ 𝑝0 ∙ 𝐶𝑖𝑛

= 𝑝3 ∙ 𝑔3 + 𝑔2 + 𝑝2 ∙ 𝑔1 + 𝑝2 ∙ 𝑝1 ∙ 𝑔0 + 𝑝2 ∙ 𝑝1 ∙ 𝑝0 ∙ 𝐶𝑖𝑛

= 𝑔3 + 𝑝3 ∙ 𝑝2 ∙ 𝑔3 + 𝑔2 + 𝑔1 + 𝑝1 ∙ 𝑔0 + 𝑝1 ∙ 𝑝0 ∙ 𝐶𝑖𝑛

= 𝑔3 + 𝑝3 ∙ 𝑔2 + 𝑝3 ∙ 𝑝2 ∙ 𝑝1 ∙ 𝑔3 + 𝑔2 + 𝑔1 + 𝑔0 + 𝑝0 ∙ 𝐶𝑖𝑛

[4] R. Jackson and S. Talwar, “High speed binary addition,” in Conference Record of the Thirty-Eighth Asilomar Conference on 
Signals, Systems and Computers, 2004., vol. 2, Nov 2004, pp. 1350–1353 Vol.2.



Friday, June 28, 2019 17

The 2nd equality in the previous slide is the Ling factorization and the quantity in 
the second factor is actually the Ling pseudo group carry (𝐻4). The 3rd and the 4th

equalities are the higher order factorizations. The quantities in the second factors 
in these equalities may be called the Jackson-Talwar pseudo carries of order 3 and 
4 respectively.

In order to understand the theory define 2 more signals (𝑏𝑖) and (𝑑𝑖) as:

𝑏𝑖 = 𝑔𝑖 + 𝑔𝑖−1 + 𝑔𝑖−2 + 𝑔𝑖−3

𝑑𝑖 = 𝑔𝑖 + 𝑝𝑖 ∙ 𝑔𝑖−1 + 𝑝𝑖 ∙ 𝑝𝑖−1 ∙ 𝑝𝑖−2

Define 4th order Jackson-Talwar group carry (𝐽𝑖) as:

𝐽𝑖 = 𝐶𝑖 + 𝐶𝑖−1 + 𝐶𝑖−2 + 𝐶𝑖−3



Friday, June 28, 2019 18

Starting with this definition for (𝐽𝑖+1), we can define it in terms of (𝐽𝑖−3) as:

𝐽𝑖+1

= 𝐶𝑖+1 + 𝐶𝑖 + 𝐶𝑖−1 + 𝐶𝑖−2

= 𝑔𝑖 + 𝑝𝑖 ∙ 𝐶𝑖 + 𝐶𝑖 + 𝐶𝑖−1 + 𝐶𝑖−2

= 𝑔𝑖 + 𝐶𝑖 +𝐶𝑖−1 + 𝐶𝑖−2

= 𝑔𝑖 + 𝑔𝑖−1 + 𝑝𝑖−1∙ 𝐶𝑖−1 + 𝐶𝑖−1 + 𝐶𝑖−2

= 𝑔𝑖 + 𝑔𝑖−1 + 𝐶𝑖−1 + 𝐶𝑖−2

= 𝑔𝑖 + 𝑔𝑖−1 + 𝑔𝑖−2 + 𝑝𝑖−2 ∙ 𝐶𝑖−2 + 𝐶𝑖−2

= 𝑔𝑖 + 𝑔𝑖−1 + 𝑔𝑖−2 + 𝐶𝑖−2

= 𝑔𝑖 + 𝑔𝑖−1 + 𝑔𝑖−2 + 𝑔𝑖−3 + 𝑝𝑖−3 ∙ 𝐶𝑖−3

= 𝑏𝑖 + 𝑑𝑖−3 ∙ 𝐽𝑖−3



Friday, June 28, 2019 19

Thus the above equation and the definition of (𝑑𝑖−3) can be collected together 
using the binary prefix operator (°) as:
𝐽𝑖+1
𝑑𝑖−3

=
𝑏𝑖
𝑑𝑖−3

°
𝐽𝑖−3
1

Strikingly similar!



Friday, June 28, 2019 20

▪ The discussions in the above subsections are based on the assumption that the 
generate signals (𝑔𝑖) and the propagate signals (𝑝𝑖) are computed for each bit.

▪ There is no reason why group generate signals (𝑔𝑖⋯𝑗) and group propagate 

signals (𝑝𝑖⋯𝑗) can not be computed for groups of adjacent bits in place of 

individual bits.

▪ These signals defined over such groups can then be reduced in similar treelike 
structures as discussed earlier.

▪ Such parallel prefix adders are known as higher valency adders.

▪ However, a parallel prefix adder with valency 2 is not the same as a Ling adder 
or that with valency 4 is not the same as a Jackson-Talwar adder which are 
different and architecturally more efficient.



Friday, June 28, 2019 21

• In case of Ling adders, the generate signals (𝑔𝑖) are combined as conjunctions 
and the propagate signals (𝑝𝑖) are combined as disjunctions respectively. These 
combinations are, however, limited to only 2 adjacent signals.

• Arguably Jackson-Talwar adders are motivated by the fact that more than 2 
adjacent generate signals can be combined as conjunctions (Reduced 
Generate) and corresponding propagate signals (Hyper Propagate) were 
calculated in such a way that the overall addition of multibit integers remains 
correct.

• In case more than 2 propagate signals are combined as disjunctions and the 
corresponding generate signals are calculated in similar way to preserve the 
multi-bit addition semantics, one can create a new family of adders which 
when looked from the Dimitrakopoulos-Nikolos perspective, can be decoupled 
in more than 2 subtrees and are consequently faster and more efficient.



Friday, June 28, 2019 22

A pseudo carry 𝐾𝑖 = 𝐻𝑖 + 𝑞𝑖−2 ∙ 𝐻𝑖−2 = 𝐶𝑖 + 𝐶𝑖−1 + 𝑝𝑖−2 ∙ 𝑝𝑖−3 ∙ 𝐶𝑖−2 + 𝐶𝑖−3 is propagated in 
lieu of the conventional carry 𝐶𝑖 or pseudo Ling carry 𝐻𝑖.

Conventional carries can be extracted from them by 𝐶𝑖 = 𝑝𝑖−1 ∙ 𝐾𝑖 as proved below:

𝑝𝑖−1 ∙ 𝐾𝑖

= 𝑝𝑖−1 ∙ 𝑔𝑖−1 + 𝑝𝑖−1 ∙ 𝑔𝑖−2 + 𝑝𝑖−1 ∙ 𝑞𝑖−2 ∙ 𝑔𝑖−3 + 𝑝𝑖−1 ∙ 𝑞𝑖−2 ∙ 𝑔𝑖−4 + 𝑝𝑖−1 ∙ 𝑞𝑖−2 ∙ 𝑝𝑖−4 ∙ 𝐶𝑖−4

= 𝑔𝑖−1 + 𝑝𝑖−1 ∙ 𝑔𝑖−2 + 𝑝𝑖−1 ∙ 𝑝𝑖−2 ∙ 𝑔𝑖−3 + 𝑝𝑖−1 ∙ 𝑝𝑖−2 ∙ 𝑝𝑖−3 ∙ 𝑔𝑖−4 + 𝑝𝑖−1 ∙ 𝑝𝑖−2 ∙ 𝑝𝑖−3 ∙ 𝑝𝑖−4 ∙ 𝐶𝑖−4

= 𝐶𝑖



Friday, June 28, 2019 23

Define two more local signals (𝑘𝑖) and (𝑟𝑖) as:

𝑘𝑖 = 𝑔𝑖 + 𝑔𝑖−1 + 𝑞𝑖−2 ∙ 𝑔𝑖−2 + 𝑔𝑖−3 = ℎ𝑖 + 𝑞𝑖−1 ∙ ℎ𝑖−2

and

𝑟𝑖 = 𝑝𝑖 ∙ 𝑝𝑖−1 ∙ 𝑝𝑖−2 ∙ 𝑝𝑖−3 = 𝑞𝑖 ∙ 𝑞𝑖−2

Starting with the definition of (𝐾𝑖+1)we can define it in terms of (𝐾𝑖−3) as:

𝐾𝑖+1

= 𝑔𝑖 + 𝑔𝑖−1 + 𝑞𝑖−1 ∙ 𝑔𝑖−2 + 𝑞𝑖−1 ∙ 𝑔𝑖−3 + 𝑞𝑖−1 ∙ 𝑝𝑖−3 ∙ 𝐶𝑖−3

= 𝑘𝑖 + 𝑞𝑖−1 ∙ 𝑝𝑖−3 ∙ 𝐶𝑖−3

= 𝑘𝑖 + 𝑞𝑖−1 ∙ 𝑝𝑖−3 ∙ 𝑝𝑖−4 ∙ 𝐾𝑖−3

= 𝑘𝑖 + 𝑟𝑖−1 ∙ 𝐾𝑖−3



Friday, June 28, 2019 24

Thus the above equation and the definition of (𝑟𝑖−1) can be collected together 
using the binary prefix operator (°) as:
𝐾𝑖+1
𝑟𝑖−1

=
𝑘𝑖
𝑟𝑖−1

°
𝐾𝑖−3
1

Strikingly similar!



Friday, June 28, 2019 25



Friday, June 28, 2019 26

Recurrence 
Relations

Number of 
Bits

Logic Levels 
in Critical 
Path

Number of 
Gates

Weinberger-
Smith

8 11 107

16 13 259

32 15 611

64 17 1,411

128 19 3,203



Friday, June 28, 2019 27

Recurrence 
Relations

Number of 
Bits

Logic Levels 
in Critical 
Path

Number of 
Gates

Ling 8 10 118

16 12 274

32 14 646

64 16 1,478

128 18 3,334



Friday, June 28, 2019 28

Recurrence 
Relations

Number of 
Bits

Logic Levels 
in Critical 
Path

Number of 
Gates

Jackson-
Talwar

8 9 212

16 11 460

32 13 1,004

64 15 2,188

128 17 5,260



Friday, June 28, 2019 29

Recurrence 
Relations

Number of 
Bits

Logic Levels 
in Critical 
Path

Number of 
Gates

Our Proposal 8 9 164

16 11 364

32 13 812

64 15 1,804

128 17 3,980



Friday, June 28, 2019 30

• The number of logic levels in the critical path for all the adders based on Ling 
recurrence are 1 less than the values for the corresponding adders based on 
Weinberger-Smith recurrence. These levels in case of adders based on Jackson-
Talwar recurrence as well as those based on our proposed novel recurrence are 
still lower by 1, as expected.

• The total gate count for all the adders are increasing from Weinberger-Smith 
adder to Ling adder to Jackson-Talwar adder.

• The comparison between Jackson-Talwar adder and our proposed adder is 
particularly interesting. Though the speeds achieved by both the adders is the 
same, yet the total gate count in case of our proposed adder is much lower as 
compared to the former.



Friday, June 28, 2019

May I answer any of your questions?

Thanks for your Attention!


