

Modulo- $(2^n + 3)$ Parallel Prefix Addition via Diminished-3 Representation of Residues

Authors: Ghassem Jaberipur, Sahar Moradi Cherati

Arith 26

Kindly presented by: Paulo Sérgio Alves Martins

Contents

2/22

- INTRODUCTION
- BACKGROUND
 - **DIMINISHED-1 ADDERS**
 - MODULO- $(2^n + 3)$ ADDERS
- **DIMINISHED-3 (D3) REPRESENTATION AND ADDITION**
 - **D3** PARALLEL PREFIX ADDITION
 - **DERIVATION OF** $\{0, 1, 2\}$ **INDICATOR** T_S
 - **DERIVATION OF D3** SUM S'
- **EVALUATION AND COMPARISON**
- CONCLUSIONS

INTRODUCTION

Residue number systems (RNS) • $\mathcal{R} = \{m_1, m_2 \dots m_k\}, m_i (1 \le i \le k)$ • $M = \prod_{i=1}^{k} m_i$ Applications Cryptography digital signal/image processing High Speed **RNS** Features Low Power $X, Y \in \mathcal{R}$ $X = (x_1, x_2 \dots, x_k), Y = (y_1, y_2 \dots, y_k),$ where $x_i = |X|_{m_i}, y_i = |Y|_{m_i}$ $Z = X \circledast Y, z_i = x_i \circledast y_i$, where $\circledast \in \{+, -, \times\}$

➢ Popular τ = {2ⁿ − 1,2ⁿ, 2ⁿ + 1}

Seneral form: $2^n \pm \delta(1 \le \delta < 2^{n-1})$

Parallel prefix modulo- $(2^n - \delta)$ adders: > $\delta = 1$ > $\delta = 3$ [Jaberipur,2015] > $\delta = 2^q + 1$ [Langroudi,2015]

 $\geq 2^n + \delta = 2^{n+1} - \delta'$, where $1 < \delta' = 2^n - \delta < 2^n$

No direct fast solution

Delay $(3 + 2 \log n)\Delta$ $(4 + 2 \log n)\Delta$ $(5 + 2 \log n)\Delta$

DIMINISHED-1 ADDERS

Diminished-1 encoding

Diminished-1 addition

$$\begin{aligned} X: A \text{ modulo}-(2^{n}+1) \text{ residue } \in [0,2^{n}] \\ X = X' + z_{X}, \text{ where } X' = X - 1 \in [0,2^{n}-1] \text{ for } X > 0 \\ z_{X} = 0(1), \text{ if and only if } X = 0(>0) \end{aligned} \qquad \begin{aligned} S = |A + B|_{2^{n}+1} = S' + z_{S}, A = A' + z_{A}, B = B' + z_{B} \\ S' = S - 1, A' = A - 1, B' = B - 1 \text{ for } S, A, B > 0 \\ z_{S}, z_{A}, z_{B}: \text{ zero-indicator bits} \end{aligned}$$
$$\begin{aligned} \sum_{x = 0}^{Z_{S}} \sum_{x = |A' + B' + z_{A} + z_{B} - z_{S}|_{2^{n}+1} \\ = \left|\widehat{W'} + z_{A}z_{B}\overline{w'_{n}}\right|_{2^{n}} \end{aligned} \qquad \begin{aligned} A' + B' = 2^{n}w'_{n} + \widehat{W'}, \text{ where } \widehat{W'} = w'_{n-1} \dots w'_{0} \\ S' = S - 1 = |A + B|_{2^{n}+1} - 1 \\ = |A' + 1 + B' + 1 - 1|_{2^{n}+1} = |2^{n}w'_{n} + \widehat{W'} + 1|_{2^{n}+1} \\ = |\widehat{W'} + 1 - w'_{n}|_{2^{n}+1} = \widehat{W'} + \overline{w'_{n}} \end{aligned}$$

Related Work: Modulo- $(2^n + 1)$ **D1 adder**

 $b_0 a_0$

* *

 h_1

DIMINISHED-3 REPRESENTATION AND ADDITION

DIMINISHED-3 REPRESENTATION

X: Modulo– $(2^n + 3)$ residue $\in [0, 2^n + 2]$ {0, 1, 2} [3, 2ⁿ + 2]

D3 Represei

Intation

$$T_X \in \{0, 1, 2\}$$
-indicator
 $T_X = t_1 t_0$
 $X' \in [0, 2^n - 1]$
 $X' : n$ bit
 $X = X' + T_X$

$$T_X = 0 \Leftrightarrow X = 0, X' = 0$$
$$T_X = 1 \Leftrightarrow X = 1, X' = 0$$
$$T_X = 2 \Leftrightarrow X = 2, X' = 0$$
$$T_X = 3 \Leftrightarrow 3 \le X \le 2^n + 2, X' \in [0, 2^n - 1]$$

Modulo- $(2^n + 3)$ **D3** ADDITION

$$A \in [0, 2^{n} + 2] \quad A = A' + T_{A}$$

$$B \in [0, 2^{n} + 2] \quad B = B' + T_{B}$$

$$A' = a_{n-1} \dots a_{2} \quad a_{1} \quad a_{0}$$

$$B' = b_{n-1} \dots b_{2} \quad b_{1} \quad b_{0}$$

$$W'_{n} \quad W'_{n-1} \dots W'_{2} \quad W'_{1} \quad W'_{0}$$

$$\begin{aligned} A, B, S &\geq 3\\ S' &= S - 3 = |A + B|_{2^{n} + 3} - 3\\ &= |A' + 3 + B' + 3 - 3|_{2^{n} + 3} = |2^{n} w'_{n} + \widehat{W'} + 3|_{2^{n} + 3}\\ &= |\widehat{W'} + 3(1 - w'_{n})|_{2^{n} + 3} = \widehat{W'} + 3\overline{w'_{n}} \end{aligned}$$

8/22

Comparison D1 and D3

9/22

0/22				D)et	ec	t S	Spe	ecia	l C	as	es										
				9	5 =	=	A	+ .	B ₂	2 ⁿ +3	E	{	0,1	1,2]	}			Γ	D1			
			IF A'	+B'	= 2 ⁿ	- 1	THE	EN ξ ₁	= 1 H	E LSE ξ	1 = ()				[<i>S</i> =	= A ·	+ B	$2^{n}+1^{-1}$	= 0	
			IF A'	+B'	= 2 ⁿ	- 2	THE	EN ξ ₂	= 1 H	ELSE ξ	₂ = (0		IF A'	+B'	$= 2^{n} -$	- 1 T	THEN	λξ=	1 EL	SE ξ =	: 0
			IF A'	a' + B' =	= 2 ⁿ	- 3	THE	EN ξ ₃	= 1 I	ELSE ξ	3 = 0	0										
		$A' \\ B'$		a_{n-1} b_{n-1}		a_2 b_2	a_1 b_1	a_0 b_0		$a_{n-1} \\ b_{n-1}$	···· ···	a_2 b_2	$a_1 \\ b_1$	a_0 b_0		$a_{n-1} \\ b_{n-1}$	····	a_2 b_2	$a_1 \\ b_1$	$a_0 \\ b_0$		
$\langle \rangle$	/	U V	v _n	u_{n-1} v_{n-1}		u_2 v_2	$u_1 \\ v_1$	<u>u</u> ₀	v_n	u_{n-1} v_{n-1}	···· ···	u_2 v_2	u_1 v_1	u ₀ 1	v _n	u_{n-1} v_{n-1}		u_2 v_2	$\begin{array}{c} u_1 \\ v_1 \\ 1 \end{array}$	<i>u</i> ₀		
	2	$2^{n} - 1$	0	1		1	1	1	0	1		1	1	1	0	1		1	1	1		
			ξ1	$= P_{n-1}$	$1:2\overline{G}_{1}$	n-1:2	$\frac{1}{2}h_1u_0$	D	ξ	$P_2 = P_{n-1}$	$1:2\overline{G}$	n-1:2	$h_1\overline{u}$	0	ξ	$_{3} = P_{n}$	_1:2 ⁷	\overline{n}_{n-1}	$\frac{1}{2}\overline{u_1}u$	0		

11/22 **DERIVATION OF** T_S $\alpha_1 \alpha_0 \mid \beta_1 \beta_0$ T_B T_A 0 00 1 3 2 01 11 10 1 \rightarrow 0 1 2 3 00 0,0 0,1 0 1,0 1,1 $3\overline{\xi_1}$ $\overline{\xi_1}, \overline{\xi_1}$ $\frac{1,1}{\overline{\xi_1}} \frac{\overline{\xi_2}}{\overline{\xi_2}},$ 3 2 01 1,0 0,1 1 1 $\xi_1 \lor \xi_2 \ \underline{\xi_3}$ 1,1 $\overline{\xi_1}, \overline{\xi_1}$ $\xi_1 + 3 \overline{\xi_1} \overline{\xi_2}$ 2 11 2 3 3 , $\xi_2 \vee \overline{\xi_1} \overline{\xi_3}$ $\xi_1 \xi_2$, $3\overline{\xi_1}$ $\xi_1 + 3\overline{\xi_1}\overline{\xi_2}$ $2\xi_1 + \xi_2 + 3\overline{\xi_1}\overline{\xi_2}\overline{\xi_3}$ 10 3 3 1,0 1,1 1,1 a: $T_S \in \{0, 1, 2, 3\}$ b: $\sigma_1 \sigma_0 \in \{00, 01, 11, 10\}$ $\mathcal{K} = P_{n-1:2}\overline{G_{n-1:2}}, \quad \xi_1 = \mathcal{K}h_1u_0, \quad \xi_2 = \mathcal{K}h_1\overline{u_0}, \quad \xi_3 = \mathcal{K}\overline{u_1}u_0$ • $\sigma_1 = (\alpha_1 \beta_1 \vee \alpha_0 \beta_0) \overline{\mathcal{K}} \vee f_1(\alpha_1, \beta_1, \alpha_0, \beta_0, u_1, v_1, u_0)$ • $\sigma_0 = (\alpha_1 \beta_0 \vee \alpha_0 \beta_1) \overline{\mathcal{K}} \vee f_0(\alpha_1, \beta_1, \alpha_0, \beta_0, u_1, v_1, u_0)$

Impact of ξ -dependent noise terms on T_S

T_A	T_B	ξ1	ξ2	ξ3	T_{S}	S	Justification					
3	0	Х	Х	Х	3	≥3	$S = A + B = A \le 2^n + 2$					
	$T_S = 3$											

T_A	T_B	ξ1	ξ2	ξ3	T_{S}	S	Justification				
3	1	0	Х	Х	3	≥ 4	$A' + B' = A' < 2^n - 1 \Longrightarrow S = A + B = A' + 3 + 1 < 2^n + 3$				
3	1	1	Х	Х	0	0	$A' + B' = 2^n - 1 \Longrightarrow A + B = 2^n + 3, S = A + B _{2^n + 3} = 0$				
	$T_S = 3\overline{\xi_1}$										

T_A	T_B	ξ1	ξ2	ξ3	T_{S}	S	Justification					
3	2	0	0	Χ	3	≥ 5	$A' + B' = A' < 2^n - 2 \Longrightarrow S = A + B = A' + 3 + 2 < 2^n + 3$					
3	2	0	1	Χ	0	0	$A' + B' = 2^n - 2 \Longrightarrow A + B = 2^n + 3, S = A + B _{2^n + 3} = 0$					
3	2	1	0	X	1	1	$A' + B' = 2^n - 1 \Longrightarrow A + B = 2^n + 4, S = A + B _{2^n + 3} = 1$					
	$T_{S} = \xi_{1} + 3 \overline{\xi_{1}} \overline{\xi_{2}}$											

	T_A	T_B	ξ1	ξ2	ξ3	T_{S}	S	Justification
ſ	3	3	0	0	0	3	≥6	$A' + B' < 2^n - 3 \Longrightarrow S = A + B = A' + B' + 6 < 2^n + 3$
ſ	3	3	0	0	0	3	≥ 3	$2^{n} \le A' + B' \le 2^{n} + 2^{n} - 2 \Longrightarrow 3 \le S = A + B _{2^{n} + 3} \le 2^{n} + 1$
ſ	3	3	0	0	1	0	0	$A' + B' = 2^n - 3 \Longrightarrow A + B = 2^n + 3, S = A + B _{2^n + 3} = 0$
ĺ	3	3	0	1	0	1	1	$A' + B' = 2^n - 2 \Longrightarrow A + B = 2^n + 4, S = A + B _{2^n + 3} = 1$
ĺ	3	3	1	0	0	2	2	$A' + B' = 2^n - 1 \Longrightarrow A + B = 2^n + 5, S = A + B _{2^n + 3} = 2$
								$T_S = 2\xi_1 + \xi_2 + 3 \overline{\xi_1} \overline{\xi_2} \overline{\xi_3}$

DERIVATION OF S'

$$S' = |A' + T_A + B' + T_B - T_S|_{2^n + 3} = |A' + B' + T_A + T_B - T_S|_{2^n + 3}$$
$$= |2^n w'_n + \widehat{W'} + T|_{2^n + 3} = |\widehat{W'} + T - 3w'_n|_{2^n + 3} = |\widehat{W'} + \delta'|_{2^n + 3}, \qquad \delta' = T - 3w'_n$$

	0	1	2	3
0	0	0	0	0
1	0	0	0	$3\xi_1 + 1$
2	0	0	1	$2\xi_1 + 3\xi_2 + 2$
3	0	$3\xi_1 + 1$	$2\xi_1 + 3\xi_2 + 2$	$\xi_1 + 2\xi_2 + 3\xi_3 + 3$

THE NOISE TERM $T = T_A + T_B - T_S$ IN TERMS OF T_A , T_B , and ξ BITS

COMPOUND RPP REALIZATION OF S'

$$S' = \left| \widehat{W'} + z \overline{w'_n} + \delta' \right|_{2^n} \qquad \delta' = \delta'_1 \delta'_0 \in \{0, 1, 2\}$$

 $\delta_1' = \overline{\xi_1} \alpha_1 \beta_1 (\alpha_0 \oplus \beta_0) \vee \overline{\xi_1} \ \overline{\xi_2} z \overline{w_n'},$

 $\delta_0' = \xi_1 x \lor \xi_2 z \lor \alpha_0 \beta_0(\alpha_1 \oplus \beta_1) \lor \alpha_1 \beta_1 \overline{\alpha_0 \lor \beta_0}$

 $z = \alpha_1 \beta_1 \alpha_0 \beta_0$

The required RPP circuitry

Carry Bits for RPP Architecture

 $c_{i} = G_{i-1:2} \lor P_{i-1:2} c_{2} = G_{i-1:2} \lor P_{i-1:2} (g'_{1} \lor p'_{1} \overline{G_{n-1:2}}) = G_{i-1:2} \lor P_{i-1:2} (g'_{1} \lor p'_{1} \overline{G_{n-1:i}})$

 $\begin{aligned} c_2 &= g_1' \lor p_1' \overline{G_{7:2}}, \quad (g_1', p_1') \circ (\overline{G_{7:2}}, 1) \\ c_3 &= g_2 \lor p_2(g_1' \lor p_1' \overline{G_{7:3}}), \quad (g_2, p_2) \circ (g_1', p_1') \circ (\overline{G_{7:3}}, 1) \\ c_4 &= G_{3:2} \lor P_{3:2}(g_1' \lor p_1' \overline{G_{7:4}}), \quad (G, P)_{3:2} \circ (g_1', p_1') \circ (\overline{G_{7:4}}, 1) \\ c_5 &= G_{4:2} \lor P_{4:2}(g_1' \lor p_1' \overline{G_{7:5}}), \quad (G, P)_{4:2} \circ (g_1', p_1') \circ (\overline{G_{7:5}}, 1) \\ c_6 &= G_{5:2} \lor P_{5:2}(g_1' \lor p_1' \overline{G_{7:6}}), \quad (G, P)_{5:2} \circ (g_1', p_1') \circ (\overline{G_{7:6}}, 1) \\ c_7 &= G_{6:2} \lor P_{6:2}(g_1' \lor p_1' \overline{g_7}), \quad (G, P)_{6:2} \circ (g_1', p_1') \circ (\overline{g_7}, 1) \end{aligned}$

The required TPP circuitry

17/22

Carry Bits for TPP Architecture

18/22

 C_{2} $(((\overline{p'}, \overline{g'})_{11} \circ (\overline{p'}, \overline{g'})_{12}) \circ ((g, p)_7 \circ (g, p)_6)) \circ (((g, p)_5 \circ (g, p)_4) \circ ((g, p)_3 \circ (g, p)_2))$ C_{3,} $(((\overline{p},\overline{g})_2 \circ (\overline{p'},\overline{g'})_{11}) \circ ((\overline{p'},\overline{g'})_{12} \circ (g,p)_7)) \circ (((g,p)_6 \circ (g,p)_5) \circ ((g,p)_4 \circ (g,p)_3))$ $\left(\left((g,p)_3 \circ (g,p)_2 \right) \circ \left((g',p')_{11} \circ (g',p')_{12} \right) \right) \circ \overline{\left(((g,p)_7 \circ (g,p)_6) \circ ((g,p)_5 \circ (g,p)_4) \right)}$ C_{5} $(((\overline{p},\overline{g})_4 \circ (\overline{p},\overline{g})_3) \circ ((\overline{p},\overline{g})_2 \circ (\overline{p'},\overline{g'})_{11})) \circ (((\overline{p'},\overline{g'})_{12} \circ (g,p)_7) \circ ((g,p)_6 \circ (g,p)_5))$ C_{6} $(((g,p)_5 \circ (g,p)_4) \circ ((g,p)_3 \circ (g,p)_2)) \circ (((g',p')_{11} \circ (g',p')_{12}) \circ ((g,p)_7 \circ (g,p)_6))$ $c_{7,}\left(\left((g,p)_6\circ(g,p)_5\right)\circ\left((g,p)_4\circ(g,p)_3\right)\right)\circ\left(((\overline{p},\overline{g})_2\circ\left(\overline{p'},\overline{g'}\right)_{11})\circ\left(\left(\overline{p'},\overline{g'}\right)_{12}\circ(g_7,1)\right)\right)$

EVALUATION AND COMPARISON

RPP SYNTHESIS RESULTS

n = 8

Design(RPP)	De	lay	A	rea	Power		
	ns	Ratio	μm^2	Ratio	mw	Ratio	
D3	0.76	1.00	25318	1.00	0.682	1.00	
D1 [1]	0.59	0.77	10128	0.40	0.328	0.48	
$2^n - 3$ [2]	0.72	0.94	13227	0.52	0.467	0.68	

n = 16

Design(RPP)	De	lay	A	rea	Power		
	ns	Ratio	μm^2	Ratio	mw	Ratio	
D3	0.81	1.00	42043	1.00	1.19	1.00	
D1 [1]	0.72	0.88	23776	0.56	0.716	0.60	
$2^n - 3$ [2]	0.78	0.96	30637	0.73	1.01	0.85	

[1] Jaberipur,2011[2] Jaberipur,2015

TPP Results

DELAY AND AREA MEASURES

Design(TPP)	Delay(∆)	Area (# of gates)
D3	$(5+2\log n)$	$3n \log n + 15n + 39$
D1 [1]	$(3+2\log n)$	$3n\log n + 12n - 1$
$2^n - 3$ [2]	$(4+2\log n)$	$3n\log n + 12n + 4$

Synthesis results for n = 8

Design (TPP)	De	lay	A	rea	Power		
	ns	Ratio	μm^2	Ratio	mw	Ratio	
D3	0.65	1.00	30686	1.00	0.956	1.00	
D1 [1]	0.57	0.88	14227	0.46	0.375	0.39	
$2^n - 3$ [2]	0.64	0.98	14152	0.46	0.500	0.52	

Synthesis results for n = 16

Design (TPP)	De	lay	A	rea	Power		
	ns	Ratio	μm^2	Ratio	mw	Ratio	
D3	0.73	1.00	51121	1.00	1.60	1.00	
D1 [1]	0.64	0.88	34441	0.67	0.939	0.59	
$2^n - 3$ [2]	0.73	1.00	32712	0.64	1.081	0.67	

[1] Jaberipur,2011[2] Jaberipur,2015

CONCLUSIONS

- Implemented the required parallel prefix (RPP and TPP architectures) adders based on the novel diminished-3 representation of residues in $\{3,2^n + 2\}$ and 2-bit $\{0,1,2\}$ indicator
- The adder delay is only 2Δ more than the modulo- $(2^n + 1)$ diminished-1 adder, and 1Δ more than that of the companion modulo- $(2^n 3)$ adder
- Same speed (synthesis result) for the proposed designs and those of the modulo-(2ⁿ 3) adders
- Area and Power overhead reduces as n grows larger

Thank You

jaberipur@sbu.ac.ir saha.moradi@mail.sbu.ac.ir