

High-Throughput Multiplier Architectures Enabled by Intra-Unit Fast Forwarding

Jihee Seo and Dae Hyun Kim

School of Electrical Engineering and Computer Science Washington State University

ARITH'19, Kyoto, Japan (June 10 - 12)

Outline

Motivation

Related work

- Conventional arithmetic operation.
- On-line arithmetic operation.

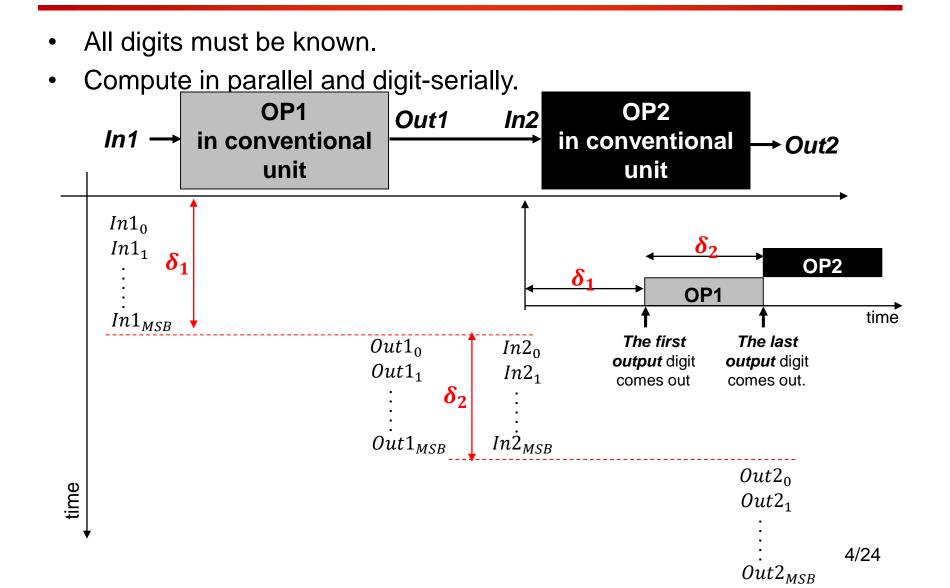
• Our main work

- Intra-unit forwarding.
- High-throughput multiplier architectures (*proposed*).
- Application of our proposed architectures.
 - NBBE-2, RBBE-4, and CRBBE-4.
- Simulation results
- Conclusion

Arithmetic unit for high throughput

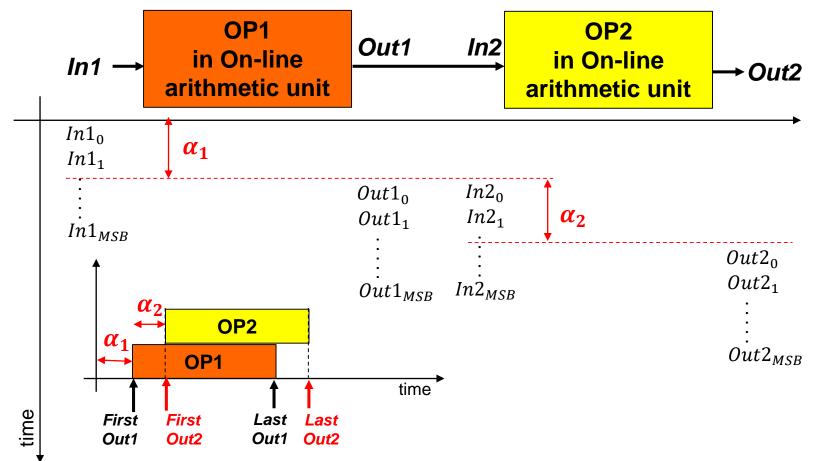
- The amount of data to be processed is hugely increased.
 - Compute-intensive application : need to complete computation with shorter execution time.
 - Memory-intensive application : need to process large data loaded from memory in time.
- → The importance of **high-throughput processing unit** goes up.
- The performance of arithmetic units has a great impact on the throughput of processing unit.

Conventional arithmetic operation



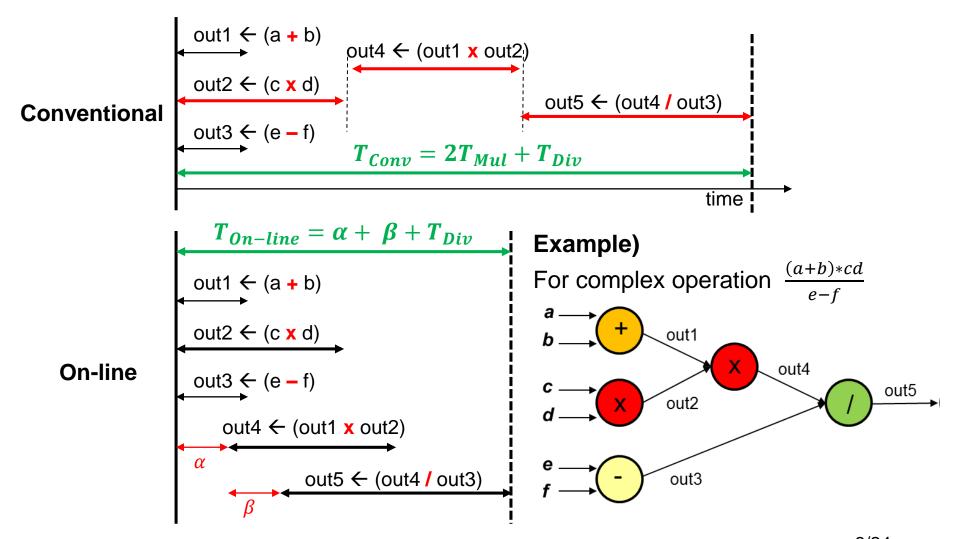
On-line arithmetic operation [1]

- Can process partial input.
 - So, it can be executed in overlapped manner.



[1] M. D. Ercegovac, "On-line arithmetic : An overview," in Real Time Signal Processing VIII, Proc. SPIE, vol. 495, pp.86-93 5/24

Conventional vs On-line arithmetic operation [1]



[1] M. D. Ercegovac, "On-line arithmetic : An overview," in Real Time Signal Processing VIII, Proc. SPIE, vol. 495, pp.86-93 6/24

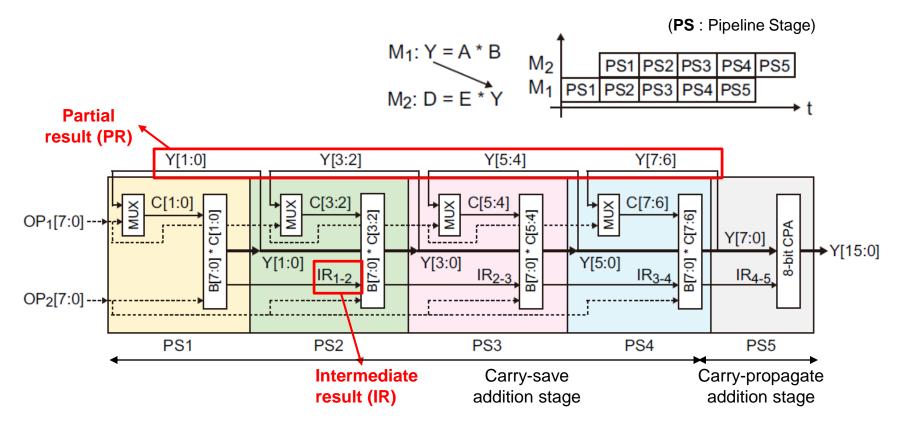
Dependency distance

- Distance between the instruction under data dependency.
- Example1) ٠ i1 : $R1 = A \times B$ i2 : R2 = C x R1 **Dependency distance : 1** (= **D1** dependency) Example2) ۲ i1 : $R1 = A \times B$ $i2: R2 = C \times D$ i3 : R3 = R1 x R1 **Dependency distance : 2** (= **D2** dependency) Example3) ٠ i1 : **R1** = A x B $i2 : R2 = C \times D$ i3 : $R3 = R2 \times R1$ Dependency distance : 2 Dependency distance : 1

Intra-unit forwarding

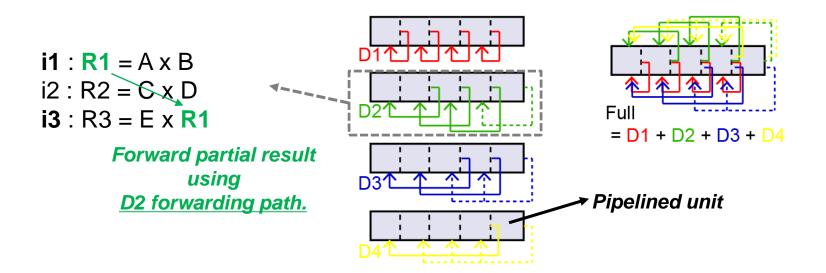
Example) When Dependency distance = 1

- 5-stage 8bit x 8bit multiplication.



Intra-unit forwarding

- Example) 5-stage unit.
 - D1 ~ D4 dependency can be considered.
 - D1 ~ D4 forwarding path can be added.
 - * Forwarding path type :

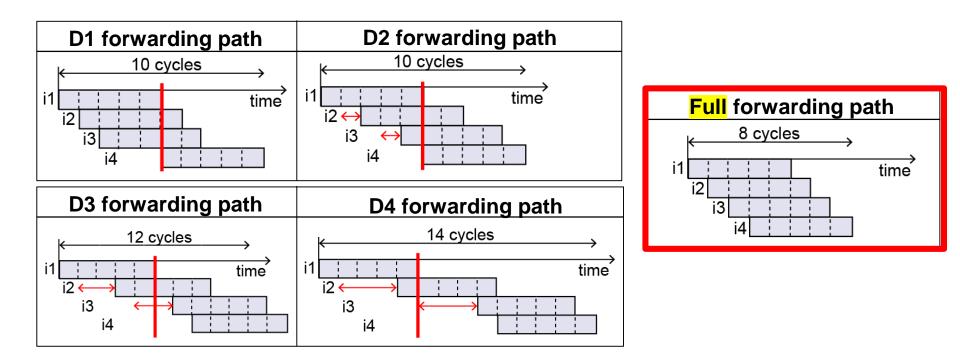


Intra-unit forwarding

- How about this case?
 - **i1** : <u>**R1**</u> = A1 x B1
 - i2 : $\underline{R2} = A2 \times \underline{R1}$ (D1 dependency)
 - **i3** : $R3 = A3 \times \mathbb{R2}$ (D1 dependency)
 - $i4: R4 = A4 \times R1$ (D3 dependency)

Suppose,

each stage takes 1 clock cycle.



Dependency type

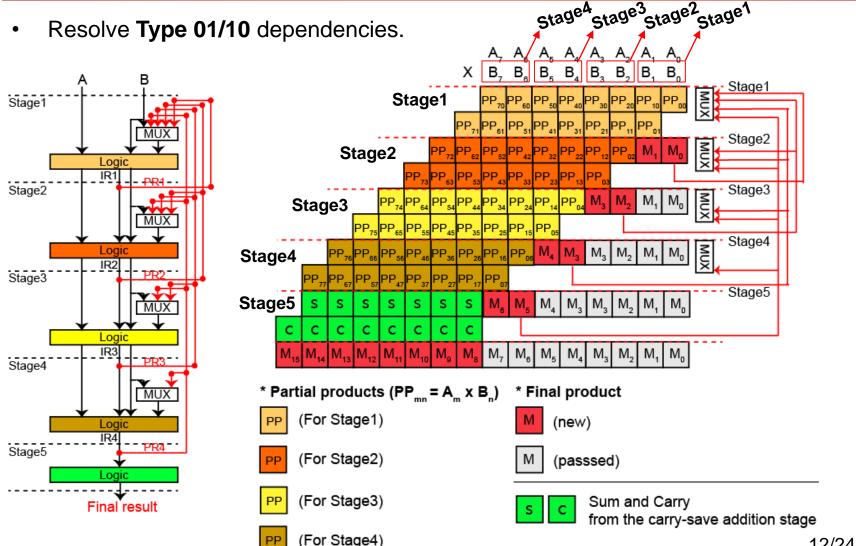
• There are three types of dependencies we consider.

For Y = OP1 x OP2						
Dependency	OP1	OP2				
Type 01	Independent	Dependent				
Type 10	Dependent	Independent				
Type 11	Dependent	Dependent				

Example)

Dependency Type :	<u>Type 01</u>	<u>Type 10</u>	<u>Type 11</u>
	i1 : X = A x B	i1:X = A x B	i1 : <mark>X</mark> = A x B
	i2: Y = C x X	i2:Y = X × C	i2 : Y = X x C
			i3: Z = X x Y

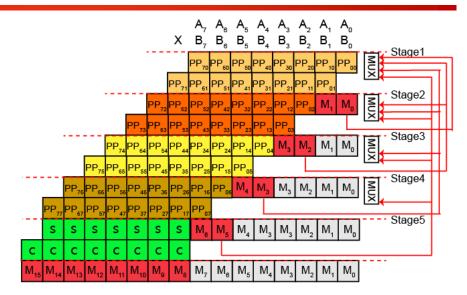
High-throughput multiplier architectures Arch1 (proposed)



Arch1 (proposed)_example

• **Example)** i1 : $X = A \times B$

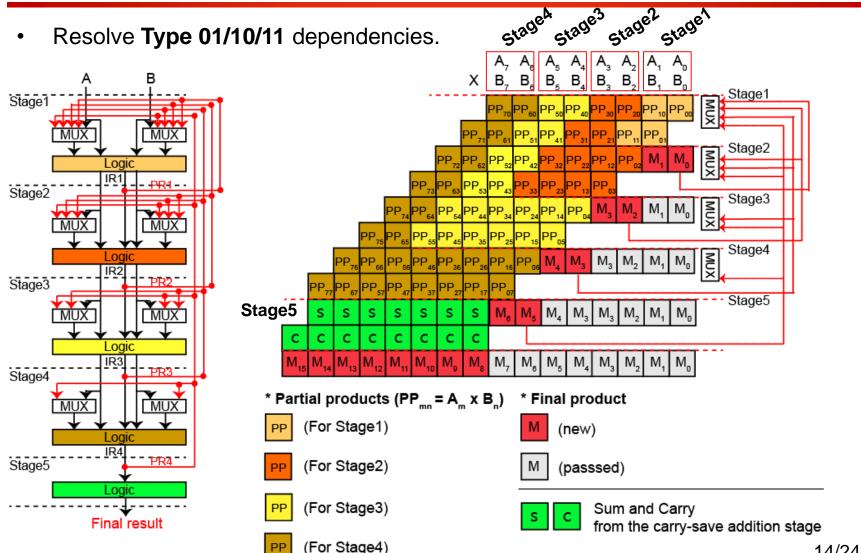
i2 : Y = C x *X_{low}*



(CIk : Clock cycle, ST : pipeline stage, Gen / Acc PR : Generated/Accumulated Partial Result)

		i1				i2				
Clk	ST	Processed	Gen PR	Acc PR	ST	Processed	Gen PR	Acc PR		
1	1	A[7:0] x B[1:0]	X[1:0]	X[1:0]	-	-	-	-		
2	2	A[7:0] x B[3:2]	X[3:2]	X[3:0]	1	C[7:0] x X[1:0]	Y[1:0]	Y[1:0]		
3	3	A[7:0] x B[5:4]	X[5:4]	X[5:0]	2	C[7:0] x X[3:2]	Y[3:2]	Y[3:0]		
4	4	A[7:0] x B[7:6]	X[7:6]	X[7:0]	3	C[7:0] x X[5:4]	Y[5:4]	Y[5:0]		
5	5	Sum + Carry row	X[15:8]	X[15:0]	4	C[7:0] x X[7:6]	Y[7:6]	Y[7:0]		
6					5	Sum + Carry row	Y[15:8]	Y[15:0]		

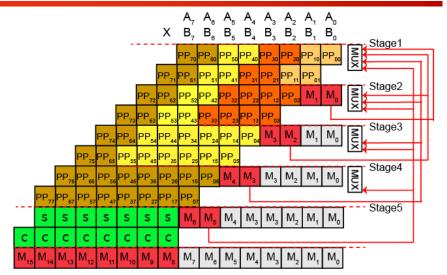
High-throughput multiplier architectures Arch2 (proposed)



Arch2 (proposed)_example

- **Example)** $i1 : X = A \times B$
 - **i2** : **Y** = C x D

$$\mathbf{i3} : \mathsf{Z} = \underline{X_{low}} \times Y_{low}$$

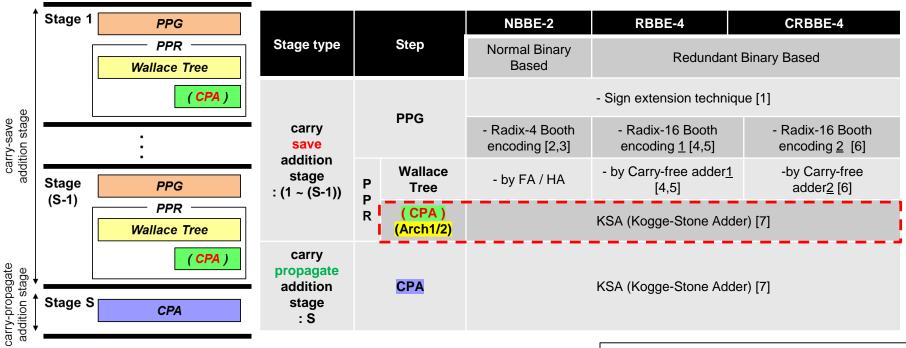


(*Clk* : Clock cycle, *ST* : pipeline stage, *Gen / Acc PR* : Generated/Accumulated Partial Result)

	i1				i2				i3			
Clk	ST	Processed	Gen PR	Acc PR	ST	Processed	Gen PR	Acc PR	ST	Processed	Gen PR	Acc PR
1	1	A[1:0] x B[1:0]	X[1:0]	X[1:0]	-	-	-	-	-	-	-	-
2	2	A[3:2] x B[1:0] B[3:2] x A[1:0]	X[3:2]	X[3:0]	1	C[1:0] x D[1:0]	Y[1:0]	Y[1:0]	-	-	-	-
3	3	A[5:4] x B[3:0] B[5:4] x A[3:0]	X[5:4]	X[5:0]	2	C[3:2] x D[1:0] D[3:2] x C[1:0]	Y[3:2]	Y[3:0]	1	X[1:0] × Y[1:0]	Z[1:0]	Z[1:0]
4	4	A[7:6] x B[5:0] B[7:6] x A[5:0]	X[7:6]	X[7:0]	3	C[5:4] x D[3:0] D[5:4] x C[3:0]	Y[5:4]	Y[5:0]	2	X[3:2] x Y[1:0] Y[3:2] x X[1:0]	Z[3:2]	Z[3:0]
5	5	Sum + Carry row	X[15:8]	X[15:0]	4	C[7:6] x D[5:0] D[7:6] x C[5:0]	Y[7:6]	Y[7:0]	3	X[5:4] x Y[3:0] Y[5:4] x X[3:0]	Z[5:4]	Z[5:0]
6					5	Sum + Carry row	Y[15:8]	Y[15:0]	4	X[7:6] x Y[5:0] Y[7:6] x X[5:0]	Z[7:6]	Z[7:0]
7									5	Sum + Carry row	Z[15:8]	Z[15:0]

Hardware implementation

For S-stage N-bit x N-bit multiplication



[1] D. P. Agrawal and T. R. N. Rao, "On Multiple Operand Addition of signed Binary Numbers," in IEEE Trans. on Computers, vol. c27, no. 11, Nov. 1978, pp. 1068 – 1070.

[2] A. D. Booth, "A Signed Binary Multiplication Technique" in The Quarterly Journal of Mechanics and Applied Mathematics, vol. 4, no. 3, Jan. 1951, pp. 236 – 240.

[3] X. Cui, W. Liu, X. Chen, Earl E. Swartzlander Jr., and F. Lombardi, "A Modified Partial Product Generator for Redundant Binary Multipliers," in IEEE Trans. on Computers, vol. 65, no. 4, Apr. 2016, pp 1165 – 1171.

[4] H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara et al., "An 8.8-ns 54x54-Bit Multiplier with High Speed Redundant Binary Architecture," in IEEE Journal of Solid State Circuits, vol. 31, no. 6, 1996, pp 773-783.

[5] N. Besli and R. G. Deshmukh, "A Novel redundant Binary Signed-Digit(RBSD) Booth's Encoding," in Proc. IEEE SoutheastConf, Apr. 2002, pp 426 – 431.

[6] Y. He and C.-H. Chang, "a New Redundant Binary Booth Encoding for Fast 2^{*n*}-Bit Multiplier Design," in IEEE Trans. on Circuits and Systems, vol. 56, no. 6, 2009, pp. 1192 – 1201.

[7] P. M. Kogge and H. S. Stone, "A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations," in IEEE Trans. on Computers, vol. C-22, no. 8, Aug. 1973, pp. 786 – 793.

PPG : Partial Product Generation,
PPR : Partial Product Reduction
CPA : Carry-Propagate addition
NBBE-2 : Radix-4 Normal Binary based

Booth encoded multiplier **RBBE-4** : Radix-16 Redundant Binary based

Booth encoded multiplier

CRBBE-4 : Radix-16 Covalent Radix-16 based Booth encoded multiplier

Simulation setting

- 2/3/5 stages 32/64 bit signed integer multiplier architectures.
- Implementation:
 - VHDL
- Synthesis:
 - Synopsys Design Compiler
 - Nangate 45nm Open Cell Library
- Execution time simulation:
 - C/C++
- Metrics:
 - Clock period
 - Area
 - Power consumption
 - Execution time

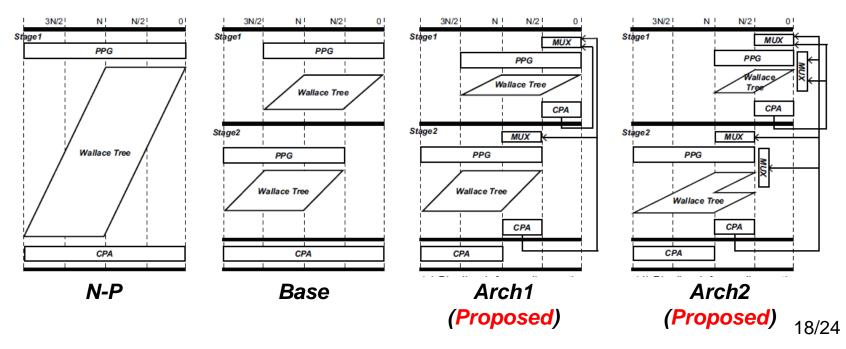
Simulation setting

- Compare four architectures for each multiplier (NBBE-2/ RBBE-4/ CRBBE-4).
 - **N-P**: Non-Pipelined multiplier architecture.
 - **Base** : Pipelined architecture <u>without</u> intra-unit forwarding paths.
 - **Arch1** : Pipelined architecture <u>with</u> intra-unit forwarding paths.

Type 01/10 dependencies can be resolved.

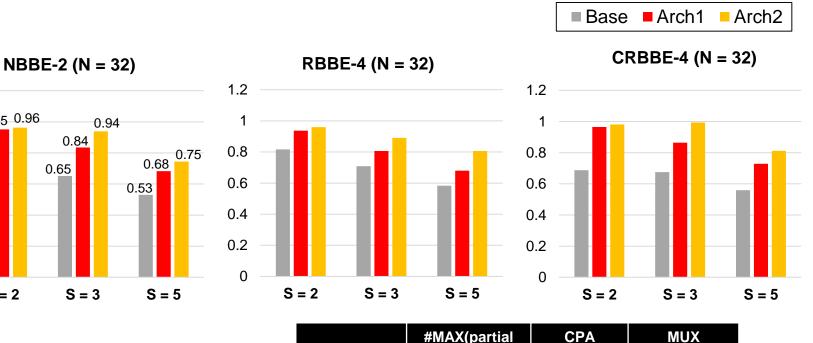
- Arch2 : Pipelined architecture with intra-unit forwarding paths.

Type 01/10/11 dependencies can be resolved.



Clock period

Base, Arch1, and Arch2 are scaled to N-P. •



***Comparison metrics**

- N : # operand bits
- S : total #stages

S = 2

0.95 0.96

1.2

1

0.8

0.6

0.4

0.2

0

0.73

- C.S : Carry-save addition stage

S = 3

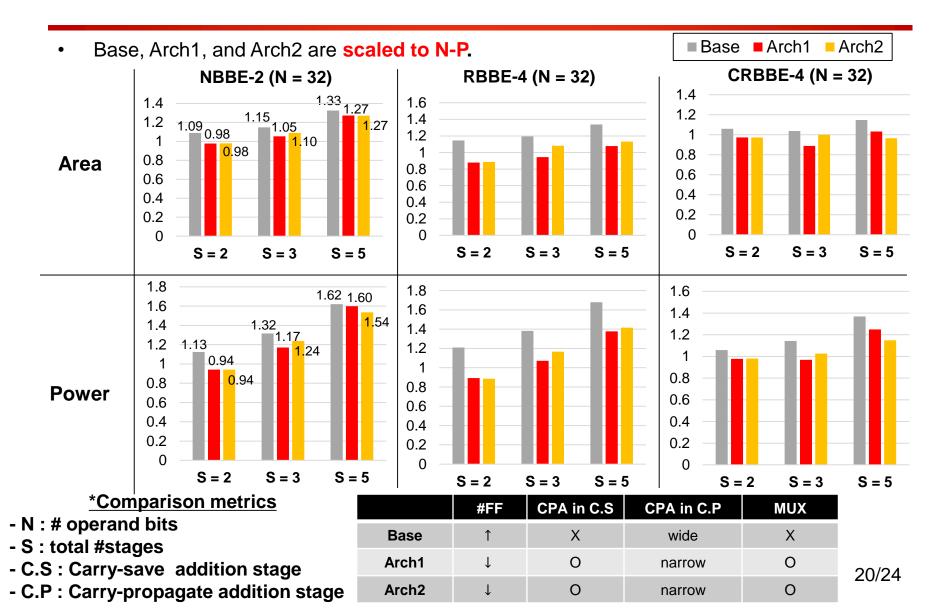
0.84

0.65

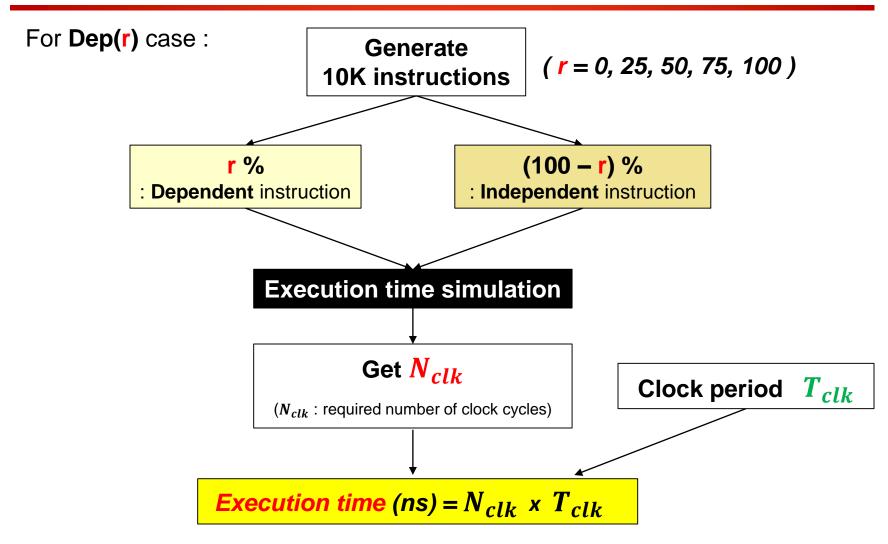
- C.P : Carry-propagate addition stage

	#MAX(partial product rows) in C.S	CPA in C.S	MUX	
Base	$\frac{N}{S-1}$	Х	Х	
Arch1	$\frac{N}{S-1}$	0	0	
Arch2	$\frac{2N}{S-1}$	0	0	1

Area / Power



Execution time



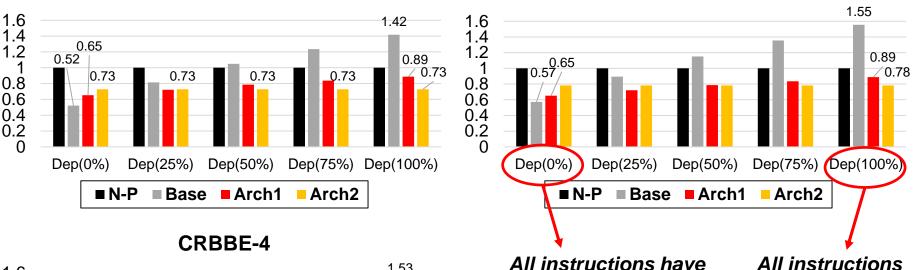
Execution time

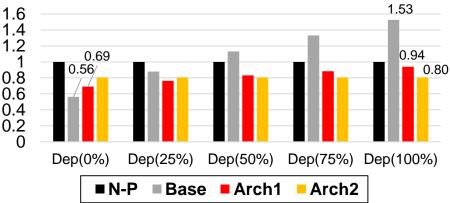
NBBE-2

Measured for <u>5stage 64bit multiplier</u> architectures (scaled to N-P).

RBBE-4

no dependency





have dependency

Conclusion

- The performance of arithmetic units has a great impact on the throughput of processing unit.
- Since there is certain-operation dominated situation and multiplication is heavily used operation, we focus on improving throughput in integer multiplication.
- Our main work is :
- 1. propose high-throughput multiplier architectures(Arch1 & 2) by
- inserting fast-forwarding path to intra-unit pipelined architecture.
- 2. show details of hardware implementation.
- 3. We also apply proposed architectures to existing multipliers
- (NBBE-2, RBBE-4, CRBBE-4).
- The simulation results show that, compared to N-P, Arch1 and Arch2 achieve 6~35% and 20~27% execution time reduction with small area and power overhead.

#