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Arithmetic unit for high throughput

• The amount of data to be processed is hugely increased.

– Compute-intensive application : need to complete computation with 

shorter execution time.  

– Memory-intensive application : need to process large data loaded from 

memory in time. 

• ➔ The importance of high-throughput processing unit goes up.

• The performance of arithmetic units has a great impact on the 

throughput of processing unit. 
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Conventional arithmetic operation

• All digits must be known.

• Compute in parallel and digit-serially.

ti
m

e

In1
Out1 In2 OP2 

in conventional 

unit
Out2

OP1

in conventional 

unit

𝐼𝑛10
𝐼𝑛11

𝐼𝑛1𝑀𝑆𝐵

. . . . .  

𝑂𝑢𝑡10
𝑂𝑢𝑡11

𝑂𝑢𝑡1𝑀𝑆𝐵

. . . . .  

𝐼𝑛20
𝐼𝑛21. . . . .  

𝐼𝑛2𝑀𝑆𝐵

OP1

OP2

time

𝜹𝟐
𝜹𝟏

The first 

output digit 

comes out

The last 

output digit 

comes out.

𝑂𝑢𝑡20
𝑂𝑢𝑡21

𝑂𝑢𝑡2𝑀𝑆𝐵

. . . . .  

𝜹𝟐

𝜹𝟏
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On-line arithmetic operation [1]

• Can process partial input. 

– So, it can be executed in overlapped manner.

[1] M. D. Ercegovac, “On-line arithmetic : An overview,” in Real Time Signal Processing VIII,Proc. SPIE, vol. 495, pp.86-93
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. . . . .  
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. . . . .  
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Conventional 

vs On-line arithmetic operation [1]

Example) 

For complex operation  
𝑎+𝑏 ∗𝑐𝑑

𝑒−𝑓
out1  (a + b)

out2  (c x d)

out3  (e – f)

out4  (out1 x out2)

out5  (out4 / out3)

𝑻𝑶𝒏−𝒍𝒊𝒏𝒆 = 𝜶 + 𝜷 + 𝑻𝑫𝒊𝒗

𝛼

𝛽

out1  (a + b)

out2  (c x d)

out3  (e – f)

out4  (out1 x out2)

out5  (out4 / out3)

𝑻𝑪𝒐𝒏𝒗 = 𝟐𝑻𝑴𝒖𝒍 + 𝑻𝑫𝒊𝒗

time

Conventional

On-line

[1] M. D. Ercegovac, “On-line arithmetic : An overview,” in Real Time Signal Processing VIII,Proc. SPIE, vol. 495, pp.86-93
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Dependency distance

• Distance between the instruction under data dependency. 

• Example1) 

• Example2)

• Example3) 

i1 : R1 = A x B

i2 : R2 = C x R1

i1 : R1 = A x B

i2 : R2 = C x D

i3 : R3 = R1 x R1

i1 : R1 = A x B

i2 : R2 = C x D

i3 : R3 = R2 x R1

Dependency distance : 1

(= D1 dependency)

Dependency distance : 2

(= D2 dependency)

Dependency distance : 2

Dependency distance : 1
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Intra-unit forwarding 

Example) When Dependency distance = 1 

- 5-stage 8bit x 8bit  multiplication.

Partial 

result (PR)

Intermediate 

result (IR)

(PS : Pipeline Stage)

Carry-save 

addition stage

Carry-propagate 

addition stage
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Intra-unit forwarding

• Example) 5-stage unit.

– D1 ~ D4 dependency can be considered.

– D1 ~ D4 forwarding path can be added.

* Forwarding path type : 

Pipelined unit

i1 : R1 = A x B

i2 : R2 = C x D

i3 : R3 = E x R1

Forward partial result 

using 

D2 forwarding path.
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Intra-unit forwarding

• How about this case? 
i1 : R1 = A1 x B1

i2 : R2 = A2 x R1 (D1 dependency)

i3 : R3 = A3 x R2 (D1 dependency)

i4 : R4 = A4 x R1 (D3 dependency)

Suppose, 

each stage takes 1 clock cycle.

D2 forwarding pathD1 forwarding path

D3 forwarding path D4 forwarding path

Full forwarding path
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Dependency type

• There are three types of dependencies we consider.

For Y  = OP1 x OP2

Dependency OP1 OP2

Type 01 Independent Dependent

Type 10 Dependent Independent

Type 11 Dependent Dependent

Example)

Dependency Type : Type 10

i1 : X = A x B

i2 : Y = X x C

Type 11 

i1 : X = A x B

i2 : Y = X x C

i3 : Z = X x Y

i1 : X = A x B

i2 : Y = C x X

Type 01
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High-throughput multiplier architectures 

_Arch1 (proposed) 

• Resolve Type 01/10 dependencies.

Stage1

Stage2

Stage3

Stage4

Stage5
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Arch1 (proposed)_example 

• Example)  i1 : X = A x B

i2 : Y = C x 𝑋𝑙𝑜𝑤

i1 i2

Clk ST Processed Gen PR Acc PR ST Processed Gen PR Acc PR

1 1 A[7:0] x B[1:0] X[1:0] X[1:0] - - - -

2 2 A[7:0] x B[3:2] X[3:2] X[3:0] 1 C[7:0] x X[1:0] Y[1:0] Y[1:0]

3 3 A[7:0] x B[5:4] X[5:4] X[5:0] 2 C[7:0] x X[3:2] Y[3:2] Y[3:0]

4 4 A[7:0] x B[7:6] X[7:6] X[7:0] 3 C[7:0] x X[5:4] Y[5:4] Y[5:0]

5 5 Sum + Carry row X[15:8] X[15:0] 4 C[7:0] x X[7:6] Y[7:6] Y[7:0]

6 5 Sum + Carry row Y[15:8] Y[15:0]

( Clk : Clock cycle, ST : pipeline stage,  Gen / Acc PR : Generated/Accumulated Partial Result )
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High-throughput multiplier architectures 

_Arch2 (proposed) 

• Resolve Type 01/10/11 dependencies.

Stage5



15/24

Arch2 (proposed)_example 

• Example)  i1 : X = A x B

i2 : Y = C x D

i3 : Z = 𝑋𝑙𝑜𝑤 x 𝑌𝑙𝑜𝑤

i1 i2 i3

Clk ST Processed Gen PR Acc PR ST Processed Gen PR Acc PR ST Processed Gen PR Acc PR

1 1 A[1:0] x B[1:0] X[1:0] X[1:0] - - - - - - - -

2 2 A[3:2] x B[1:0]  

B[3:2] x A[1:0]

X[3:2] X[3:0] 1 C[1:0] x D[1:0] Y[1:0] Y[1:0] - - - -

3 3 A[5:4] x B[3:0]  

B[5:4] x A[3:0]

X[5:4] X[5:0] 2 C[3:2] x D[1:0]

D[3:2] x C[1:0]

Y[3:2] Y[3:0] 1 X[1:0] x Y[1:0] Z[1:0] Z[1:0]

4 4 A[7:6] x B[5:0]  

B[7:6] x A[5:0]

X[7:6] X[7:0] 3 C[5:4] x D[3:0] 

D[5:4] x C[3:0]

Y[5:4] Y[5:0] 2 X[3:2] x Y[1:0] 

Y[3:2] x X[1:0]

Z[3:2] Z[3:0]

5 5 Sum + Carry row X[15:8] X[15:0] 4 C[7:6] x D[5:0] 

D[7:6] x C[5:0]

Y[7:6] Y[7:0] 3 X[5:4] x Y[3:0] 

Y[5:4] x X[3:0]

Z[5:4] Z[5:0]

6 5 Sum + Carry row Y[15:8] Y[15:0] 4 X[7:6] x Y[5:0] 

Y[7:6] x X[5:0]

Z[7:6] Z[7:0]

7 5 Sum + Carry row Z[15:8] Z[15:0]

( Clk : Clock cycle, ST : pipeline stage,  

Gen / Acc PR : Generated/Accumulated Partial Result )
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Hardware implementation

Stage type Step

NBBE-2 RBBE-4 CRBBE-4

Normal Binary 

Based
Redundant Binary Based

carry

save

addition

stage

: (1 ~ (S-1))

PPG

- Sign extension technique [1]

- Radix-4 Booth 

encoding [2,3]

- Radix-16 Booth 

encoding 1 [4,5]

- Radix-16 Booth 

encoding 2 [6]

P

P

R

Wallace

Tree
- by FA / HA

- by Carry-free adder1

[4,5]

-by Carry-free 

adder2 [6]

( CPA )

(Arch1/2)
KSA (Kogge-Stone Adder) [7]

carry

propagate

addition

stage

: S

CPA KSA (Kogge-Stone Adder) [7]

For S-stage N-bit x N-bit multiplication

PPG : Partial Product Generation, 

PPR : Partial Product Reduction 

CPA : Carry-Propagate addition

NBBE-2 : Radix-4 Normal Binary based 

Booth encoded multiplier

RBBE-4 : Radix-16 Redundant Binary based 

Booth encoded multiplier

CRBBE-4 : Radix-16 Covalent Radix-16 based 

Booth encoded multiplier

[1] D. P. Agrawal and T. R. N. Rao, “On Multiple Operand Addition of signed Binary Numbers,” in  IEEE Trans. on Computers, 

vol. c27, no. 11, Nov. 1978, pp. 1068 – 1070.

[2]  A. D. Booth, “A Signed Binary Multiplication Technique” in The Quarterly Journal of Mechanics and Applied Mathematics, 

vol. 4, no. 3, Jan. 1951, pp. 236 – 240.

[3] X. Cui, W. Liu, X. Chen, Earl E. Swartzlander Jr., and F. Lombardi, “A Modified Partial Product Generator for Redundant 

Binary Multipliers,” in IEEE Trans. on Computers, vol. 65, no. 4, Apr. 2016, pp 1165 – 1171.

[4]  H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara et al., “An 8.8-ns 54x54-Bit Multiplier with High Speed 

Redundant Binary Architecture,” in IEEE Journal of Solid State Circuits, vol. 31, no. 6, 1996, pp 773-783.

[5]  N. Besli and R. G. Deshmukh, “A Novel redundant Binary Signed-Digit(RBSD) Booth’s Encoding,” in Proc. IEEE 

SoutheastConf, Apr. 2002, pp 426 – 431.

[6]  Y. He and C.-H. Chang, “a New Redundant Binary Booth Encoding for Fast 2𝑛-Bit Multiplier Design,” in IEEE Trans. on 

Circuits and Systems, vol. 56, no. 6, 2009, pp. 1192 – 1201.

[7] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations,” 

in IEEE Trans. on Computers, vol. C-22, no. 8, Aug. 1973, pp. 786 – 793.
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Simulation setting

• 2 / 3 / 5 stages 32 / 64 bit signed integer multiplier architectures. 

• Implementation: 

– VHDL

• Synthesis:

– Synopsys Design Compiler

– Nangate 45nm Open Cell Library

• Execution time simulation:

– C/C++

• Metrics: 

– Clock period

– Area

– Power consumption

– Execution time
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N-P Base Arch1

(Proposed)

Arch2

(Proposed)

Simulation setting

• Compare four architectures for each multiplier (NBBE-2/ RBBE-4/ CRBBE-4). 

– N-P : Non-Pipelined multiplier architecture.

– Base : Pipelined architecture without intra-unit forwarding paths.

– Arch1 : Pipelined architecture with intra-unit forwarding paths.

Type 01/10 dependencies can be resolved.  

– Arch2 : Pipelined architecture with intra-unit forwarding paths. 

Type 01/10/11 dependencies can be resolved. 
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Clock period

• Base, Arch1, and Arch2 are scaled to N-P.

0

0.2

0.4

0.6

0.8

1

1.2

S = 2 S = 3 S = 5

NBBE-2 (N = 32)

0

0.2

0.4

0.6

0.8

1

1.2

S = 2 S = 3 S = 5

RBBE-4 (N = 32)

0

0.2

0.4

0.6

0.8

1

1.2

S = 2 S = 3 S = 5

CRBBE-4 (N = 32)

Base Arch1 Arch2

0.73
0.65

0.53

0.95

0.84

0.68

0.96 0.94

0.75

#MAX(partial 

product rows) 

in C.S

CPA 

in C.S 

MUX

Base 𝑁

𝑆 − 1

X X

Arch1 𝑁

𝑆 − 1

O O

Arch2 2𝑁

𝑆 − 1

O O 

*Comparison metrics

- N : # operand bits

- S : total #stages

- C.S : Carry-save  addition stage

- C.P : Carry-propagate addition stage
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Area / Power

• Base, Arch1, and Arch2 are scaled to N-P.

#FF CPA in C.S CPA in C.P MUX

Base ↑ X wide X

Arch1 ↓ O narrow O 

Arch2 ↓ O narrow O

*Comparison metrics

- N : # operand bits

- S : total #stages

- C.S : Carry-save  addition stage

- C.P : Carry-propagate addition stage

1.33

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S = 2 S = 3 S = 5

NBBE-2 (N = 32)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

S = 2 S = 3 S = 5

RBBE-4 (N = 32)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S = 2 S = 3 S = 5

CRBBE-4 (N = 32)

Base Arch1 Arch2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S = 2 S = 3 S = 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S = 2 S = 3 S = 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S = 2 S = 3 S = 5

Area

Power

1.09
1.15

0.98
1.05

1.27

0.98
1.10

1.27

1.13

1.32

1.62

0.94

1.17

1.60

0.94

1.24

1.54
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Execution time

Generate 

10K instructions

r % 
: Dependent instruction

(100 – r) % 
: Independent instruction

Execution time simulation

Get 𝑵𝒄𝒍𝒌

(𝑵𝒄𝒍𝒌 : required number of clock cycles)

Execution time (ns) = 𝑵𝒄𝒍𝒌 x 𝑻𝒄𝒍𝒌

Clock period   𝑻𝒄𝒍𝒌

( r = 0, 25, 50, 75, 100 )
For Dep(r) case :  
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Execution time

• Measured for 5stage 64bit multiplier architectures (scaled to N-P).

0.52

1.42

0.65
0.89

0.73 0.73 0.73 0.73 0.73

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Dep(0%) Dep(25%) Dep(50%) Dep(75%) Dep(100%)

NBBE-2

N-P Base Arch1 Arch2

0.57

1.55

0.65 0.89
0.78

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Dep(0%) Dep(25%) Dep(50%) Dep(75%) Dep(100%)

RBBE-4

N-P Base Arch1 Arch2

0.56

1.53

0.69 0.94
0.80

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Dep(0%) Dep(25%) Dep(50%) Dep(75%) Dep(100%)

CRBBE-4

N-P Base Arch1 Arch2

All instructions have 

no dependency

All instructions 

have dependency
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Conclusion

• The performance of arithmetic units has a great impact on the 
throughput of processing unit. 

• Since there is certain-operation dominated situation and multiplication is 
heavily used operation, we focus on improving throughput in integer 
multiplication. 

• Our main work is : 

• 1. propose high-throughput multiplier architectures(Arch1 & 2) by     

• inserting fast-forwarding path to intra-unit pipelined architecture. 

• 2. show details of hardware implementation.  

• 3. We also apply proposed architectures to existing multipliers

• (NBBE-2, RBBE-4, CRBBE-4).

• The simulation results show that, compared to N-P, Arch1 and Arch2 
achieve 6~35% and 20~27% execution time reduction with small area 
and power overhead.
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