
High-Throughput Multiplier

Architectures Enabled by Intra-Unit

Fast Forwarding

Jihee Seo and Dae Hyun Kim

School of Electrical Engineering and Computer Science

Washington State University

ARITH’19, Kyoto, Japan (June 10 - 12)

2/24

Outline

• Motivation

• Related work
– Conventional arithmetic operation.

– On-line arithmetic operation.

• Our main work

– Intra-unit forwarding.

– High-throughput multiplier architectures (proposed).

– Application of our proposed architectures.

• NBBE-2, RBBE-4, and CRBBE-4.

• Simulation results

• Conclusion

3/24

Arithmetic unit for high throughput

• The amount of data to be processed is hugely increased.

– Compute-intensive application : need to complete computation with

shorter execution time.

– Memory-intensive application : need to process large data loaded from

memory in time.

• ➔ The importance of high-throughput processing unit goes up.

• The performance of arithmetic units has a great impact on the

throughput of processing unit.

4/24

Conventional arithmetic operation

• All digits must be known.

• Compute in parallel and digit-serially.

ti
m

e

In1
Out1 In2 OP2

in conventional

unit
Out2

OP1

in conventional

unit

𝐼𝑛10
𝐼𝑛11

𝐼𝑛1𝑀𝑆𝐵

.

𝑂𝑢𝑡10
𝑂𝑢𝑡11

𝑂𝑢𝑡1𝑀𝑆𝐵

.

𝐼𝑛20
𝐼𝑛21.

𝐼𝑛2𝑀𝑆𝐵

OP1

OP2

time

𝜹𝟐
𝜹𝟏

The first

output digit

comes out

The last

output digit

comes out.

𝑂𝑢𝑡20
𝑂𝑢𝑡21

𝑂𝑢𝑡2𝑀𝑆𝐵

.

𝜹𝟐

𝜹𝟏

5/24

On-line arithmetic operation [1]

• Can process partial input.

– So, it can be executed in overlapped manner.

[1] M. D. Ercegovac, “On-line arithmetic : An overview,” in Real Time Signal Processing VIII,Proc. SPIE, vol. 495, pp.86-93

ti
m

e

In1
Out1 In2

OP2

in On-line

arithmetic unit
Out2

OP1

in On-line

arithmetic unit

𝐼𝑛10
𝐼𝑛11

𝐼𝑛1𝑀𝑆𝐵

.

𝑂𝑢𝑡10
𝑂𝑢𝑡11

𝑂𝑢𝑡1𝑀𝑆𝐵
.

𝐼𝑛20
𝐼𝑛21.

𝐼𝑛2𝑀𝑆𝐵

𝑂𝑢𝑡20
𝑂𝑢𝑡21

𝑂𝑢𝑡2𝑀𝑆𝐵

.

First

Out1

Last

Out1

OP1

OP2

time

First

Out2

Last

Out2

𝜶𝟐
𝜶𝟏

𝜶𝟏

𝜶𝟐

6/24

Conventional

vs On-line arithmetic operation [1]

Example)

For complex operation
𝑎+𝑏 ∗𝑐𝑑

𝑒−𝑓
out1 (a + b)

out2 (c x d)

out3 (e – f)

out4 (out1 x out2)

out5 (out4 / out3)

𝑻𝑶𝒏−𝒍𝒊𝒏𝒆 = 𝜶 + 𝜷 + 𝑻𝑫𝒊𝒗

𝛼

𝛽

out1 (a + b)

out2 (c x d)

out3 (e – f)

out4 (out1 x out2)

out5 (out4 / out3)

𝑻𝑪𝒐𝒏𝒗 = 𝟐𝑻𝑴𝒖𝒍 + 𝑻𝑫𝒊𝒗

time

Conventional

On-line

[1] M. D. Ercegovac, “On-line arithmetic : An overview,” in Real Time Signal Processing VIII,Proc. SPIE, vol. 495, pp.86-93

7/24

Dependency distance

• Distance between the instruction under data dependency.

• Example1)

• Example2)

• Example3)

i1 : R1 = A x B

i2 : R2 = C x R1

i1 : R1 = A x B

i2 : R2 = C x D

i3 : R3 = R1 x R1

i1 : R1 = A x B

i2 : R2 = C x D

i3 : R3 = R2 x R1

Dependency distance : 1

(= D1 dependency)

Dependency distance : 2

(= D2 dependency)

Dependency distance : 2

Dependency distance : 1

8/24

Intra-unit forwarding

Example) When Dependency distance = 1

- 5-stage 8bit x 8bit multiplication.

Partial

result (PR)

Intermediate

result (IR)

(PS : Pipeline Stage)

Carry-save

addition stage

Carry-propagate

addition stage

9/24

Intra-unit forwarding

• Example) 5-stage unit.

– D1 ~ D4 dependency can be considered.

– D1 ~ D4 forwarding path can be added.

* Forwarding path type :

Pipelined unit

i1 : R1 = A x B

i2 : R2 = C x D

i3 : R3 = E x R1

Forward partial result

using

D2 forwarding path.

10/24

Intra-unit forwarding

• How about this case?
i1 : R1 = A1 x B1

i2 : R2 = A2 x R1 (D1 dependency)

i3 : R3 = A3 x R2 (D1 dependency)

i4 : R4 = A4 x R1 (D3 dependency)

Suppose,

each stage takes 1 clock cycle.

D2 forwarding pathD1 forwarding path

D3 forwarding path D4 forwarding path

Full forwarding path

11/24

Dependency type

• There are three types of dependencies we consider.

For Y = OP1 x OP2

Dependency OP1 OP2

Type 01 Independent Dependent

Type 10 Dependent Independent

Type 11 Dependent Dependent

Example)

Dependency Type : Type 10

i1 : X = A x B

i2 : Y = X x C

Type 11

i1 : X = A x B

i2 : Y = X x C

i3 : Z = X x Y

i1 : X = A x B

i2 : Y = C x X

Type 01

12/24

High-throughput multiplier architectures

_Arch1 (proposed)

• Resolve Type 01/10 dependencies.

Stage1

Stage2

Stage3

Stage4

Stage5

13/24

Arch1 (proposed)_example

• Example) i1 : X = A x B

i2 : Y = C x 𝑋𝑙𝑜𝑤

i1 i2

Clk ST Processed Gen PR Acc PR ST Processed Gen PR Acc PR

1 1 A[7:0] x B[1:0] X[1:0] X[1:0] - - - -

2 2 A[7:0] x B[3:2] X[3:2] X[3:0] 1 C[7:0] x X[1:0] Y[1:0] Y[1:0]

3 3 A[7:0] x B[5:4] X[5:4] X[5:0] 2 C[7:0] x X[3:2] Y[3:2] Y[3:0]

4 4 A[7:0] x B[7:6] X[7:6] X[7:0] 3 C[7:0] x X[5:4] Y[5:4] Y[5:0]

5 5 Sum + Carry row X[15:8] X[15:0] 4 C[7:0] x X[7:6] Y[7:6] Y[7:0]

6 5 Sum + Carry row Y[15:8] Y[15:0]

(Clk : Clock cycle, ST : pipeline stage, Gen / Acc PR : Generated/Accumulated Partial Result)

14/24

High-throughput multiplier architectures

_Arch2 (proposed)

• Resolve Type 01/10/11 dependencies.

Stage5

15/24

Arch2 (proposed)_example

• Example) i1 : X = A x B

i2 : Y = C x D

i3 : Z = 𝑋𝑙𝑜𝑤 x 𝑌𝑙𝑜𝑤

i1 i2 i3

Clk ST Processed Gen PR Acc PR ST Processed Gen PR Acc PR ST Processed Gen PR Acc PR

1 1 A[1:0] x B[1:0] X[1:0] X[1:0] - - - - - - - -

2 2 A[3:2] x B[1:0]

B[3:2] x A[1:0]

X[3:2] X[3:0] 1 C[1:0] x D[1:0] Y[1:0] Y[1:0] - - - -

3 3 A[5:4] x B[3:0]

B[5:4] x A[3:0]

X[5:4] X[5:0] 2 C[3:2] x D[1:0]

D[3:2] x C[1:0]

Y[3:2] Y[3:0] 1 X[1:0] x Y[1:0] Z[1:0] Z[1:0]

4 4 A[7:6] x B[5:0]

B[7:6] x A[5:0]

X[7:6] X[7:0] 3 C[5:4] x D[3:0]

D[5:4] x C[3:0]

Y[5:4] Y[5:0] 2 X[3:2] x Y[1:0]

Y[3:2] x X[1:0]

Z[3:2] Z[3:0]

5 5 Sum + Carry row X[15:8] X[15:0] 4 C[7:6] x D[5:0]

D[7:6] x C[5:0]

Y[7:6] Y[7:0] 3 X[5:4] x Y[3:0]

Y[5:4] x X[3:0]

Z[5:4] Z[5:0]

6 5 Sum + Carry row Y[15:8] Y[15:0] 4 X[7:6] x Y[5:0]

Y[7:6] x X[5:0]

Z[7:6] Z[7:0]

7 5 Sum + Carry row Z[15:8] Z[15:0]

(Clk : Clock cycle, ST : pipeline stage,

Gen / Acc PR : Generated/Accumulated Partial Result)

16/24

Hardware implementation

Stage type Step

NBBE-2 RBBE-4 CRBBE-4

Normal Binary

Based
Redundant Binary Based

carry

save

addition

stage

: (1 ~ (S-1))

PPG

- Sign extension technique [1]

- Radix-4 Booth

encoding [2,3]

- Radix-16 Booth

encoding 1 [4,5]

- Radix-16 Booth

encoding 2 [6]

P

P

R

Wallace

Tree
- by FA / HA

- by Carry-free adder1

[4,5]

-by Carry-free

adder2 [6]

(CPA)

(Arch1/2)
KSA (Kogge-Stone Adder) [7]

carry

propagate

addition

stage

: S

CPA KSA (Kogge-Stone Adder) [7]

For S-stage N-bit x N-bit multiplication

PPG : Partial Product Generation,

PPR : Partial Product Reduction

CPA : Carry-Propagate addition

NBBE-2 : Radix-4 Normal Binary based

Booth encoded multiplier

RBBE-4 : Radix-16 Redundant Binary based

Booth encoded multiplier

CRBBE-4 : Radix-16 Covalent Radix-16 based

Booth encoded multiplier

[1] D. P. Agrawal and T. R. N. Rao, “On Multiple Operand Addition of signed Binary Numbers,” in IEEE Trans. on Computers,

vol. c27, no. 11, Nov. 1978, pp. 1068 – 1070.

[2] A. D. Booth, “A Signed Binary Multiplication Technique” in The Quarterly Journal of Mechanics and Applied Mathematics,

vol. 4, no. 3, Jan. 1951, pp. 236 – 240.

[3] X. Cui, W. Liu, X. Chen, Earl E. Swartzlander Jr., and F. Lombardi, “A Modified Partial Product Generator for Redundant

Binary Multipliers,” in IEEE Trans. on Computers, vol. 65, no. 4, Apr. 2016, pp 1165 – 1171.

[4] H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara et al., “An 8.8-ns 54x54-Bit Multiplier with High Speed

Redundant Binary Architecture,” in IEEE Journal of Solid State Circuits, vol. 31, no. 6, 1996, pp 773-783.

[5] N. Besli and R. G. Deshmukh, “A Novel redundant Binary Signed-Digit(RBSD) Booth’s Encoding,” in Proc. IEEE

SoutheastConf, Apr. 2002, pp 426 – 431.

[6] Y. He and C.-H. Chang, “a New Redundant Binary Booth Encoding for Fast 2𝑛-Bit Multiplier Design,” in IEEE Trans. on

Circuits and Systems, vol. 56, no. 6, 2009, pp. 1192 – 1201.

[7] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations,”

in IEEE Trans. on Computers, vol. C-22, no. 8, Aug. 1973, pp. 786 – 793.

17/24

Simulation setting

• 2 / 3 / 5 stages 32 / 64 bit signed integer multiplier architectures.

• Implementation:

– VHDL

• Synthesis:

– Synopsys Design Compiler

– Nangate 45nm Open Cell Library

• Execution time simulation:

– C/C++

• Metrics:

– Clock period

– Area

– Power consumption

– Execution time

18/24

N-P Base Arch1

(Proposed)

Arch2

(Proposed)

Simulation setting

• Compare four architectures for each multiplier (NBBE-2/ RBBE-4/ CRBBE-4).

– N-P : Non-Pipelined multiplier architecture.

– Base : Pipelined architecture without intra-unit forwarding paths.

– Arch1 : Pipelined architecture with intra-unit forwarding paths.

Type 01/10 dependencies can be resolved.

– Arch2 : Pipelined architecture with intra-unit forwarding paths.

Type 01/10/11 dependencies can be resolved.

19/24

Clock period

• Base, Arch1, and Arch2 are scaled to N-P.

0

0.2

0.4

0.6

0.8

1

1.2

S = 2 S = 3 S = 5

NBBE-2 (N = 32)

0

0.2

0.4

0.6

0.8

1

1.2

S = 2 S = 3 S = 5

RBBE-4 (N = 32)

0

0.2

0.4

0.6

0.8

1

1.2

S = 2 S = 3 S = 5

CRBBE-4 (N = 32)

Base Arch1 Arch2

0.73
0.65

0.53

0.95

0.84

0.68

0.96 0.94

0.75

#MAX(partial

product rows)

in C.S

CPA

in C.S

MUX

Base 𝑁

𝑆 − 1

X X

Arch1 𝑁

𝑆 − 1

O O

Arch2 2𝑁

𝑆 − 1

O O

*Comparison metrics

- N : # operand bits

- S : total #stages

- C.S : Carry-save addition stage

- C.P : Carry-propagate addition stage

20/24

Area / Power

• Base, Arch1, and Arch2 are scaled to N-P.

#FF CPA in C.S CPA in C.P MUX

Base ↑ X wide X

Arch1 ↓ O narrow O

Arch2 ↓ O narrow O

*Comparison metrics

- N : # operand bits

- S : total #stages

- C.S : Carry-save addition stage

- C.P : Carry-propagate addition stage

1.33

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S = 2 S = 3 S = 5

NBBE-2 (N = 32)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

S = 2 S = 3 S = 5

RBBE-4 (N = 32)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S = 2 S = 3 S = 5

CRBBE-4 (N = 32)

Base Arch1 Arch2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S = 2 S = 3 S = 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S = 2 S = 3 S = 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S = 2 S = 3 S = 5

Area

Power

1.09
1.15

0.98
1.05

1.27

0.98
1.10

1.27

1.13

1.32

1.62

0.94

1.17

1.60

0.94

1.24

1.54

21/24

Execution time

Generate

10K instructions

r %
: Dependent instruction

(100 – r) %
: Independent instruction

Execution time simulation

Get 𝑵𝒄𝒍𝒌

(𝑵𝒄𝒍𝒌 : required number of clock cycles)

Execution time (ns) = 𝑵𝒄𝒍𝒌 x 𝑻𝒄𝒍𝒌

Clock period 𝑻𝒄𝒍𝒌

(r = 0, 25, 50, 75, 100)
For Dep(r) case :

22/24

Execution time

• Measured for 5stage 64bit multiplier architectures (scaled to N-P).

0.52

1.42

0.65
0.89

0.73 0.73 0.73 0.73 0.73

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Dep(0%) Dep(25%) Dep(50%) Dep(75%) Dep(100%)

NBBE-2

N-P Base Arch1 Arch2

0.57

1.55

0.65 0.89
0.78

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Dep(0%) Dep(25%) Dep(50%) Dep(75%) Dep(100%)

RBBE-4

N-P Base Arch1 Arch2

0.56

1.53

0.69 0.94
0.80

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Dep(0%) Dep(25%) Dep(50%) Dep(75%) Dep(100%)

CRBBE-4

N-P Base Arch1 Arch2

All instructions have

no dependency

All instructions

have dependency

23/24

Conclusion

• The performance of arithmetic units has a great impact on the
throughput of processing unit.

• Since there is certain-operation dominated situation and multiplication is
heavily used operation, we focus on improving throughput in integer
multiplication.

• Our main work is :

• 1. propose high-throughput multiplier architectures(Arch1 & 2) by

• inserting fast-forwarding path to intra-unit pipelined architecture.

• 2. show details of hardware implementation.

• 3. We also apply proposed architectures to existing multipliers

• (NBBE-2, RBBE-4, CRBBE-4).

• The simulation results show that, compared to N-P, Arch1 and Arch2
achieve 6~35% and 20~27% execution time reduction with small area
and power overhead.

Thank you!

&

Question? ☺

