Optimal word-length allocation for the fixed-point implementation of linear filters and controllers

Thibault Hilaire, Hacène Ouzia and Benoit Lopez Sorbonne Université, France Inria, Paris Saclay

ARITH26 2019, June 2019, Kyoto

Introduction	Fixed-Point implementation	Word-length optimization under accuracy constraint	Conclusi
• 00 00			

Filters/Controllers Algorithms

Introduction

ixed-Point implementatior

Word-length optimization under accuracy constraint

Conclusions

Filters/Controllers Algorithms

Hardware

 Introduction
 Fixed-Point implementation
 Word-length optimization under accuracy constraint
 Conclusions

 Context
 Implementation
 Implementa

implementation: transformation of the mathematical object into finite precision operations to be performed on a specific target

Filters/Controllers

Algorithms

Embedded

Hardware

 Introduction
 Fixed-Point implementation
 Word-length optimization under accuracy constraint
 Conclusions

 ●0000
 0000
 000
 00

Context

implementation: transformation of the mathematical object into finite precision operations to be performed on a specific target

Specially for Fixed-Point arithmetic, the implementation process is:

- time-consuming and error-prone
- provides no guaranty on the the errors
- potentially non-optimal

Optimal word-length allocation for fixed-point filters

We need a code generator!

We will here focus on

• State-Space systems

We will here focus on

- State-Space systems
- the first parts of the flow, except the code generation

We will here focus on

- State-Space systems
- the first parts of the flow, except the code generation
- for FPGAs or ASICs (multiple word-length paradigm)
 w: word-lengths

We will here focus on

00000

- State-Space systems
- the first parts of the flow, except the code generation
- for FPGAs or ASICs (multiple word-length paradigm) w: word-lengths
- optimal word-length allocation

We also want it to be reliable:

Classical Signal Processing approach models errors as noises and perform statistical error analysis

¹²⁷we want to use *worst case* analysis (rigorous bounds)

Outline

Context State-Space systems

2 Fixed-Point implementation

Determining the Fixed-Point Formats Sum-of-Products by real Constants

3 Word-length optimization under accuracy constraint Error analysis Word-length allocation problem Examples

4 Conclusions and Perspectives

We consider Linear Time Invariant filters (or controllers) expressed with State-Space systems:

$$\mathscr{H} \begin{cases} \mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) \\ \mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D}\mathbf{u}(k) \end{cases}$$

where

- $\mathbf{u}(k)$ and $\mathbf{y}(k)$ are the input and output vector at time k;
- x(k) is the state vector ;
- A, B, C and D are matrices defining the system.

Worst-Case Peak Gain

Input u(k) Stable filter Output y(k) $u(k) \xrightarrow{y(k)} \mathcal{H}$

¹Volkova, H., and Lauter, "Reliable evaluation of the Worst-Case Peak Gain matrix in multiple precision," in 22nd IEEE Symposium on Computer Arithmetic, 2015

Optimal word-length allocation for fixed-point filters

Worst-Case Peak Gain

Input u(k) Stable filter Output y(k)u(k) \mathcal{H} y(k) y(k) y(k) y(k)

 $\forall k, |\mathbf{u}(k)| \leq \overline{\mathbf{u}}$

¹Volkova, H., and Lauter, "Reliable evaluation of the Worst-Case Peak Gain matrix in multiple precision," in 22nd IEEE Symposium on Computer Arithmetic, 2015

Optimal word-length allocation for fixed-point filters

Worst-Case Peak Gain

 $\forall k, |\mathbf{u}(k)| \leq \overline{\mathbf{u}}$

 $\forall k, |\mathbf{y}(k)| \leq \langle\!\langle \mathscr{H} \rangle\!\rangle \bar{\mathbf{u}}$

Worst-Case Peak Gain: $\langle\!\langle \mathscr{H} \rangle\!\rangle = |\mathsf{D}| + \sum_{k=0}^{\infty} |\mathsf{C}\mathsf{A}^k\mathsf{B}|$ The WCPG matrix can be computed at any arbitrary precision¹.

¹Volkova, H., and Lauter, "Reliable evaluation of the Worst-Case Peak Gain matrix in multiple precision," in 22nd IEEE Symposium on Computer Arithmetic, 2015

Optimal word-length allocation for fixed-point filters

Outline

2 Fixed-Point implementation

Determining the Fixed-Point Formats Sum-of-Products by real Constants

- 3 Word-length optimization under accuracy constraint
- 4 Conclusions and Perspectives

Fixed-Point Arithmetic

 $x = M \cdot 2^{\ell}$

M : mantissa (two's complement) $\in [-2^{w-1}; 2^{w-1} - 1]$

Fixed-Point Arithmetic

$$w=m-\ell+1$$

w wordlengthm Most Significant Bitℓ Least Significant Bit

Fixed-Point Arithmetic

$$w=m-\ell+1$$

w wordlengthm Most Significant Bitℓ Least Significant Bit

The MSB/LSB (or MSB/word-length) must be chosen carefully:

• we choose MSB such that no overflow occurs:

$$\forall k, x(k) \in [-2^m; 2^m - 2^\ell]$$

we choose LSB such that we achieve a certain accuracy

Determining the MSB position

We consider the vector of our variables $\zeta(k) = \begin{pmatrix} \mathbf{x}(k) \\ \mathbf{y}(k) \end{pmatrix}$. We want to determine their MSB **m** such that

$$\forall k, \quad \zeta_i(k) \in [-2^{\mathbf{m}_i}, 2^{\mathbf{m}_i}(1-2^{1-\mathbf{w}_i})].$$

Determining the MSB position

We consider the vector of our variables $\zeta(k) = \begin{pmatrix} \mathbf{x}(k) \\ \mathbf{y}(k) \end{pmatrix}$. We want to determine their MSB **m** such that

$$\forall k, \quad \zeta_i(k) \in [-2^{\mathbf{m}_i}, 2^{\mathbf{m}_i}(1-2^{1-\mathbf{w}_i})].$$

Our system is rewritten as

$$\mathscr{H}_{\zeta} \begin{cases} \mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) \\ \zeta(k) = \mathbf{M}_{1}\mathbf{x}(k) + \mathbf{M}_{2}\mathbf{u}(k), \end{cases}$$

Determining the MSB position

We consider the vector of our variables $\zeta(k) = \begin{pmatrix} \mathbf{x}(k) \\ \mathbf{y}(k) \end{pmatrix}$. We want to determine their MSB **m** such that

$$\forall k, \quad \zeta_i(k) \in [-2^{\mathbf{m}_i}, 2^{\mathbf{m}_i}(1-2^{1-\mathbf{w}_i})].$$

Our system is rewritten as

$$\mathscr{H}_{\zeta} \begin{cases} \mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) \\ \zeta(k) = \mathbf{M}_{1}\mathbf{x}(k) + \mathbf{M}_{2}\mathbf{u}(k), \end{cases}$$

And then the least MSB is obtained with

$$\mathbf{m}(\mathbf{w}) = \left\lceil \log_2\left(\overline{\zeta}\right) - \log_2\left(\mathbf{1} - 2^{\mathbf{1} - \mathbf{w}}\right) \right\rceil, \quad \overline{\zeta} = \langle\!\langle \mathscr{H}_{\zeta} \rangle\!\rangle \, \overline{\mathbf{u}}$$

Optimal word-length allocation for fixed-point filters

Determining the MSB position

We consider the vector of our variables $\zeta(k) = \begin{pmatrix} \mathbf{x}(k) \\ \mathbf{y}(k) \end{pmatrix}$. We want to determine their MSB **m** such that

$$\forall k, \quad \zeta_i(k) \in [-2^{\mathbf{m}_i}, 2^{\mathbf{m}_i}(1-2^{1-\mathbf{w}_i})].$$

Our system is rewritten as

$$\mathscr{H}_{\zeta} \begin{cases} \mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) \\ \zeta(k) = \mathbf{M}_{1}\mathbf{x}(k) + \mathbf{M}_{2}\mathbf{u}(k), \end{cases}$$

And then the least MSB is obtained with

$$\mathbf{m}(\mathbf{w}) = \left\lceil \log_2\left(\overline{\zeta}\right) \right\rceil + \delta(\mathbf{w}),$$

Optimal word-length allocation for fixed-point filters

Determining the MSB position

We consider the vector of our variables $\zeta(k) = \begin{pmatrix} \mathbf{x}(k) \\ \mathbf{y}(k) \end{pmatrix}$. We want to determine their MSB **m** such that

$$\forall k, \quad \zeta_i(k) \in [-2^{\mathbf{m}_i}, 2^{\mathbf{m}_i}(1-2^{1-\mathbf{w}_i})].$$

Our system is rewritten as

$$\mathscr{H}_{\zeta} \begin{cases} \mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) \\ \zeta(k) = \mathbf{M}_{1}\mathbf{x}(k) + \mathbf{M}_{2}\mathbf{u}(k), \end{cases}$$

And then the least MSB is obtained with

$$\mathbf{m}(\mathbf{w}) = \left\lceil \log_2\left(\overline{\zeta}\right) \right\rceil + \delta(\mathbf{w}),$$

 $\delta_{i}(\mathbf{w}) = \begin{cases} 0 \quad \text{if } \mathbf{w}_{i} \geq \widetilde{\mathbf{w}}_{i} \\ 1 \quad \text{if } \mathbf{w}_{i} < \widetilde{\mathbf{w}}_{i} \end{cases}, \quad \widetilde{\mathbf{w}} \triangleq \mathbb{1} + \left\lceil \log_{2}\left(\overline{\zeta}\right) \right\rceil - \left\lfloor \log_{2}\left(2^{\left\lceil \log_{2}\left(\overline{\zeta}\right) \right\rceil} - \overline{\zeta}\right) \right\rfloor \\ \widetilde{\mathbf{w}} \text{ can be seen as a threshold. How many bits such that } \zeta_{i} \notin \left[2^{\mathbf{m}_{i}}(1 - 2^{\mathbf{w}_{i}}); 2^{\mathbf{m}_{i}}\right] \end{cases}$

Sum-of-Products by real Constants

In the State-Space evaluation, the Sum of Products by real Constants is the basic brick operation $r = \sum_{i=1}^{N} c_i v_i$ We want to compute r with last bit accuracy with format (m, ℓ)

²Volkova, Istoan, De Dinechin and H. "Towards hardware IIR filters computing just right: Direct form I case study," IEEE Transactions on Computers, 2019

Optimal word-length allocation for fixed-point filters

T. Hilaire, H. Ouzia, B. Lopez

Sum-of-Products by real Constants

In the State-Space evaluation, the Sum of Products by real Constants is the basic brick operation $r = \sum_{i=1}^{N} c_i v_i$ We want to compute r with last bit accuracy with format (m, ℓ)

Optimal word-length allocation for fixed-point filters

²Volkova, Istoan, De Dinechin and H. "Towards hardware IIR filters computing just right: Direct form I case study," IEEE Transactions on Computers, 2019

Sum-of-Products by real Constants

In the State-Space evaluation, the Sum of Products by real Constants is the basic brick operation $r = \sum_{i=1}^{N} c_i v_i$ We want to compute r with last bit accuracy with format (m, ℓ)

It can be done using g extra guard bits. If g is large enough², the error $|r - \tilde{r}|$ is then bounded by 2^{ℓ} ^{RP}Can be done using Table-based Constant Multiplier for FPGAs

²Volkova, Istoan, De Dinechin and H. "Towards hardware IIR filters computing just right: Direct form I case study," IEEE Transactions on Computers, 2019

Optimal word-length allocation for fixed-point filters

Outline

2 Fixed-Point implementation

3 Word-length optimization under accuracy constraint Error analysis

Word-length allocation problem

Examples

The exact filter ${\mathscr H}$ is:

$$\mathcal{H} \left\{ \begin{array}{rcl} \mathbf{x} \ (k+1) &=& \mathsf{A}\mathbf{x} \ (k) + \mathsf{B}\mathbf{u}(k) \\ \mathbf{y} \ (k) &=& \mathsf{C}\mathbf{x} \ (k) + \mathsf{D}\mathbf{u}(k) \end{array} \right.$$

The actually implemented filter \mathscr{H}^{\star} is:

$$\mathcal{H}^{\star} \left\{ \begin{array}{rcl} \mathbf{x}^{\star}(k+1) &=& \mathbf{A}\mathbf{x}^{\star}(k) + \mathbf{B}\mathbf{u}(k) + \varepsilon_{\mathbf{x}}(k) \\ \mathbf{y}^{\star}(k) &=& \mathbf{C}\mathbf{x}^{\star}(k) + \mathbf{D}\mathbf{u}(k) + \varepsilon_{\mathbf{y}}(k) \end{array} \right.$$

where $\varepsilon(k) = \begin{pmatrix} \varepsilon_x(k) \\ \varepsilon_y(k) \end{pmatrix}$ collects the errors due to the Sum-of-Products.

The actually implemented filter \mathscr{H}^{\star} is:

$$\mathcal{H}^{\star} \begin{cases} \mathbf{x}^{\star}(k+1) = \mathbf{A}\mathbf{x}^{\star}(k) + \mathbf{B}\mathbf{u}(k) + \varepsilon_{\mathbf{x}}(k) \\ \mathbf{y}^{\star}(k) = \mathbf{C}\mathbf{x}^{\star}(k) + \mathbf{D}\mathbf{u}(k) + \varepsilon_{\mathbf{y}}(k) \end{cases}$$

where
$$\varepsilon(k) = \begin{pmatrix} \varepsilon_x(k) \\ \varepsilon_y(k) \end{pmatrix}$$
 collects the errors due to the Sum-of-Products.

It can be shown that the implemented system \mathscr{H}^{\star} can be seen as

with $\mathscr{H}_{\varepsilon}$ the error filter (state-space).

Using last-bit accuracy Sum-of-Products, then the error $\varepsilon(k)$ is bounded by

$$\overline{\varepsilon} = 2^{\mathbf{m} - \mathbf{w} + \mathbf{1}}$$

Using last-bit accuracy Sum-of-Products, then the error $\varepsilon(k)$ is bounded by

$$\overline{\varepsilon} = 2^{\mathbf{m} - \mathbf{w} + \mathbf{1}}$$

So, the output error $\Delta \mathbf{y}(k)$ is bounded by

$$\Delta \overline{\mathbf{y}} = \langle\!\langle \mathscr{H}_{\varepsilon}
angle \, \overline{\varepsilon}$$

And finally

$$\Delta \overline{\mathbf{y}} = \langle\!\langle \mathscr{H}_{\varepsilon} \rangle\!\rangle \, 2^{\left\lceil \log_2 \left(\langle\!\langle \mathscr{H}_{\zeta} \rangle\!\rangle \overline{\mathbf{u}} \right) \right\rceil + \mathbf{1} - \mathbf{w} + \delta(w)}$$

Using last-bit accuracy Sum-of-Products, then the error $\varepsilon(k)$ is bounded by

$$\overline{\varepsilon} = 2^{\mathbf{m} - \mathbf{w} + \mathbf{1}}$$

So, the output error $\Delta \mathbf{y}(k)$ is bounded by

$$\Delta \overline{\mathbf{y}} = \langle\!\langle \mathscr{H}_{\varepsilon}
angle \, \overline{\varepsilon}$$

And finally

$$\Delta \overline{\mathbf{y}} = \langle\!\langle \mathscr{H}_{\boldsymbol{\varepsilon}} \rangle\!\rangle \, 2^{\left\lceil \log_2 \left(\langle\!\langle \mathscr{H}_{\boldsymbol{\zeta}} \rangle\!\rangle \overline{\mathbf{u}} \right) \right\rceil + 1\!\!1 - \mathbf{w} + \delta(\mathbf{w})}$$

The output error bound depends on the word-lengths w.

We want to minimize the total word-length involved *while* guarantying a certain accuracy ϵ .

```
\begin{split} \mathbf{w}_{opt} &= \arg\min\sum_{i} \mathbf{w}_{i} \\ \text{subject to} \\ &\Delta \overline{\mathbf{y}}_{j} \leqslant \epsilon_{j} \end{split}
```

$$\begin{split} \mathbf{w}_{opt} &= \arg\min\sum_{i} \mathbf{w}_{i} \\ \text{subject to} \\ &\sum_{j} \mathbf{E}_{ij} 2^{-\mathbf{w}_{j} + \delta_{j}} \leqslant \epsilon_{j} \end{split}$$

with
$$\mathsf{E}_{ij} \triangleq \langle\!\langle \mathscr{H}_{\varepsilon} \rangle\!\rangle_{ij} \, 2^{\left\lceil \log_2 \left(\langle\!\langle \mathscr{H}_{\zeta} \rangle\!\rangle \overline{\mathsf{u}} \right)_j \right\rceil}$$

$$\begin{split} \mathbf{w}_{opt} &= \arg\min\sum_{i} \mathbf{w}_{i} \\ \text{subject to} \\ &\sum_{j} \mathbf{E}_{ij} 2^{-\mathbf{w}_{j} + \delta_{j}} \leqslant \epsilon_{j} \end{split}$$

Recall that
$$\delta_j = \begin{cases} 0 & \text{if } w_j \ge \tilde{w}_j \\ 1 & \text{if } w_j < \tilde{w}_j \end{cases}$$

And this condition is equivalent to $(w_j \text{ and } \tilde{w}_j \in [2, u])$

$$\left(2- ilde{w}_{j}
ight)\delta_{j}+1\leq w_{j}- ilde{w}_{j}+1\leq\left(1-\delta_{j}
ight)\left(u- ilde{w}_{j}+1
ight),\quad\delta_{j}\in\left\{0,1
ight\}$$

$$\begin{split} \mathbf{w}_{opt} &= \arg\min\sum_{i} \mathbf{w}_{i} \\ \text{subject to} \\ &\sum_{j} \mathbf{E}_{ij} 2^{-\mathbf{w}_{j} + \delta_{j}} \leqslant \epsilon_{j} \\ &(2 - \widetilde{w}_{j}) \, \delta_{j} + 1 \leqslant \mathbf{w}_{j} - \widetilde{\mathbf{w}}_{j} + 1 \\ &\mathbf{w}_{j} - \widetilde{\mathbf{w}}_{j} + 1 \leqslant (1 - \delta_{j}) \left(\mathbf{u}_{j} - \widetilde{\mathbf{w}}_{j} + 1\right) \\ &2 \leqslant \mathbf{w}_{j} \leqslant \mathbf{u}_{j} \\ &\mathbf{w}_{j} \in \mathbb{Z}, \ \delta_{j} \in \{0, 1\} \end{split}$$

Separable convex non-linear integer optimization problem Generaly solved using branch-and-bound and outer approximation methods.

Existing solvers (like Bonmin, Artylis-Knitro, etc.) can be used

Separable convex non-linear integer optimization problem Generaly solved using branch-and-bound and outer approximation methods.

Existing solvers (like Bonmin, Artylis-Knitro, etc.) can be used

Two sub-optimal problem can be defined and solved:

• Uniform word-lengths

$$w_{uni} = \max\left(\left\lceil \log_2\left(\mathbf{E1}\right) - \log_2(\epsilon)
ight
ceil
ight) + 1$$

Separable convex non-linear integer optimization problem Generaly solved using branch-and-bound and outer approximation methods.

Existing solvers (like Bonmin, Artylis-Knitro, etc.) can be used

Two sub-optimal problem can be defined and solved:

• Uniform word-lengths

$$w_{\mathit{uni}} = \max\left(\left\lceil \log_2\left(\mathsf{E1}
ight) - \log_2(\epsilon)
ight
ceil
ight) + 1$$

 Equitably distributed budget error Constraints ∑_{j=1}^N E_{ij}2^{-w_j+δ_j} ≤ ε_i are transformed in N stricter but simpler constraints E_{ij}2^{-w_j+δ_j} ≤ ^{ε_i}/_N

Separable convex non-linear integer optimization problem Generaly solved using branch-and-bound and outer approximation methods.

Existing solvers (like Bonmin, Artylis-Knitro, etc.) can be used

Two sub-optimal problem can be defined and solved:

• Uniform word-lengths

$$w_{uni} = \max\left(\left\lceil \log_2\left(\mathsf{E1}\right) - \log_2(\epsilon)
ight
ceil
ight) + 1$$

 Equitably distributed budget error Constraints ∑_{j=1}^N E_{ij}2^{-w_j+δ_j} ≤ ε_i are transformed in N stricter but simpler constraints E_{ij}2^{-w_j+δ_j} ≤ ^{ε_i}/_N

 ${}^{\scriptsize\hbox{\tiny I\!C\!P}}$ Similar results, if the cost function is the total number of bits involved in the computations

Example – 1

A 10th order active controller of longitudinal oscillation³. Designed to remove the unpleasant oscillations of the vehicle (acting on the engine torque).

 $\mathbf{\overline{u}} = 10 \text{ and } \epsilon = 2^{-6}$

	oscillation controller											
	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	x 7	\mathbf{x}_8	X 9	${\bf x}_{10}$	У	f(w)
m	9	8	9	9	8	8	8	6	6	2	4	
ŵ	3	3	3	3	3	3	3	4	8	3	3	
optimal	17	15	17	17	15	15	15	11	11	3	13	149
uniform	16	16	16	16	16	16	16	16	16	16	16	176
eq. distributed	17	15	18	17	15	15	15	12	12	4	14	154

 $\overline{\zeta}_{9} pprox 63.412$

 3Lefebvre, Chevrel, and Richard, "An H_∞ based control design methodology dedicated to the active control of longitudinal oscillations," IEEE Trans. on Control Systems Technology, 2003

Optimal word-length allocation for fixed-point filters

Example – 2

A random stable 4th order State-Space, 5 inputs, 7 outputs

	random controller											
	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{y}_1	\mathbf{y}_2	\mathbf{y}_3	\mathbf{y}_4	y 5	\mathbf{y}_6	y 7	f(w)
m	6	6	5	6	16	15	16	16	16	15	16	
ŵ	3	4	3	6	4	3	6	3	4	3	6	
optimal	13	11	14	12	4	3	5	4	4	3	5	78
uniform	31	31	31	31	31	31	31	31	31	31	31	341
eq. distributed	33	32	34	32	26	25	26	26	26	25	26	311

Example – 2

A random stable 4th order State-Space, 5 inputs, 7 outputs

	random controller											
	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{y}_1	\mathbf{y}_2	y 3	y 4	y 5	y 6	y 7	$f(\mathbf{w})$
m	6	6	5	6	16	15	16	16	16	15	16	
ŵ	3	4	3	6	4	3	6	3	4	3	6	
optimal	13	11	14	12	4	3	5	4	4	3	5	78
uniform	31	31	31	31	31	31	31	31	31	31	31	341
eq. distributed	33	32	34	32	26	25	26	26	26	25	26	311

For optimal: $\mathbf{w}_3 < \widetilde{\mathbf{w}}_3$ and $\mathbf{w}_7 < \widetilde{\mathbf{w}}_7$ (so $\delta_3 = \delta_7 = 0$)

- Reliable Fixed-Point implementation of State-Space systems
 - MSB determination
 - Last-bit accuracy sum-of-Products
- Error analysis
- Word-length allocation problem, solved with three heuristics

- Reliable Fixed-Point implementation of State-Space systems
 - MSB determination
 - Last-bit accuracy sum-of-Products
- Error analysis
- Word-length allocation problem, solved with three heuristics

Perspectives:

- Now consider the code generation, using dedicated tools (FloPoCo, etc.)
- Allow a more realistic cost function
- Extend this work to full class of linear filters/controllers, in order to compare various algorithms and implementations

Introduction	Fixed-Point implementation	Word-length optimization under accuracy constraint	Conclusions
			00

Thank you Any questions ?