
Introduction Fixed-point Proof Conclusion

Formal Verification of a State-of-the-Art
Integer Square Root

Guillaume Melquiond Raphaël Rieu-Helft

Inria, TrustInSoft, Université Paris-Saclay

June 11th, 2019

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 1/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

Arbitrary-Precision Integer Arithmetic

The GNU Multiple Precision arithmetic library (GMP)

Free software, widely used.

State-of-the-art algorithms, unmatched performances.

Highly intricate algorithms written in low-level C and ASM.

Ill-suited for random testing.
GMP 5.0.4: “Two bugs in multiplication [. . .] with extremely low

probability [. . .]. Two bugs in the gcd code [. . .] For uniformly

distributed random operands, the likelihood is infinitesimally small.”

Objectives

Produce a verified library compatible with GMP.

Attain performances comparable to a no-assembly GMP.

Focus on the low-level mpn layer.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 2/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

Arbitrary-Precision Integer Arithmetic

The GNU Multiple Precision arithmetic library (GMP)

Free software, widely used.

State-of-the-art algorithms, unmatched performances.

Highly intricate algorithms written in low-level C and ASM.

Ill-suited for random testing.
GMP 5.0.4: “Two bugs in multiplication [. . .] with extremely low

probability [. . .]. Two bugs in the gcd code [. . .] For uniformly

distributed random operands, the likelihood is infinitesimally small.”

Objectives

Produce a verified library compatible with GMP.

Attain performances comparable to a no-assembly GMP.

Focus on the low-level mpn layer.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 2/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

Arbitrary-Precision Integer Arithmetic

The GNU Multiple Precision arithmetic library (GMP)

Free software, widely used.

State-of-the-art algorithms, unmatched performances.

Highly intricate algorithms written in low-level C and ASM.

Ill-suited for random testing.
GMP 5.0.4: “Two bugs in multiplication [. . .] with extremely low

probability [. . .]. Two bugs in the gcd code [. . .] For uniformly

distributed random operands, the likelihood is infinitesimally small.”

Objectives

Produce a verified library compatible with GMP.

Attain performances comparable to a no-assembly GMP.

Focus on the low-level mpn layer.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 2/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

GMP’s Square Root

mp_size_t mpn_sqrtrem
(mp_ptr sp , mp_ptr rp , mp_srcptr np , mp_size_t n);

takes a number np[n − 1] ... np[0] (with np[n − 1] 6= 0),

stores its square root into sp[dn/2e − 1] ... sp[0],

stores the remainder into rp[n − 1] ... rp[0],

returns the actual size of the remainder.

Three sub-algorithms (assuming a normalized input)

divide and conquer for n > 2,

an ad-hoc specialization for n = 2,

a bit-fiddling algorithm for n = 1.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 3/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

GMP’s Square Root

mp_size_t mpn_sqrtrem
(mp_ptr sp , mp_ptr rp , mp_srcptr np , mp_size_t n);

takes a number np[n − 1] ... np[0] (with np[n − 1] 6= 0),

stores its square root into sp[dn/2e − 1] ... sp[0],

stores the remainder into rp[n − 1] ... rp[0],

returns the actual size of the remainder.

Three sub-algorithms (assuming a normalized input)

divide and conquer for n > 2,

an ad-hoc specialization for n = 2,

a bit-fiddling algorithm for n = 1.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 3/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

GMP’s Square Root

mp_size_t mpn_sqrtrem
(mp_ptr sp , mp_ptr rp , mp_srcptr np , mp_size_t n);

takes a number np[n − 1] ... np[0] (with np[n − 1] 6= 0),

stores its square root into sp[dn/2e − 1] ... sp[0],

stores the remainder into rp[n − 1] ... rp[0],

returns the actual size of the remainder.

Three sub-algorithms (assuming a normalized input)

divide and conquer for n > 2, (proved in Coq in 2002)

an ad-hoc specialization for n = 2,

a bit-fiddling algorithm for n = 1. (actually intricate)

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 3/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

GMP’s 64-bit Square Root

mp_limb_t mpn_sqrtrem1(mp_ptr rp , mp_limb_t a0) {
mp_limb_t a1 , x0 , t2 , t, x2;
unsigned abits = a0 >> (GMP_LIMB_BITS - 1 - 8);
x0 = 0x100 | invsqrttab[abits - 0x80];
/* x0 is now an 8 bits approximation of 1/sqrt(a0) */
a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
t = (mp_limb_signed_t) (CNST_LIMB (0 x2000000000000)

- 0x30000 - a1 * x0 * x0) >> 16;
x0 = (x0 <<16) + ((mp_limb_signed_t) (x0 * t) >> (16+2));
/* x0 is now a 16 bits approximation of 1/sqrt(a0) */
t2 = x0 * (a0 >> (32 -8));
t = t2 >> 25;
t = ((mp_limb_signed_t)((a0 <<14) - t*t - MAGIC) >>(32-8));
x0 = t2 + ((mp_limb_signed_t) (x0 * t) >> 15);
x0 >>= 32;
/* x0 is now a full limb approximation of sqrt(a0) */
x2 = x0 * x0;
if (x2 + 2*x0 <= a0 - 1) { x2 += 2*x0 + 1; x0++; }
*rp = a0 - x2;
return x0;

}

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 4/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

GMP’s 64-bit Square Root

mp_limb_t mpn_sqrtrem1(mp_ptr rp , mp_limb_t a0) {
mp_limb_t a1, x0 , t2 , t, x2;
unsigned abits = a0 >> (GMP_LIMB_BITS - 1 - 8);
x0 = 0x100 | invsqrttab[abits - 0x80];
/* x0 is an 8 bits approximation of 1/sqrt(a0) */
a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
t = (mp_limb_signed_t) (CNST_LIMB (0 x2000000000000)

- 0x30000 - a1 * x0 * x0) >> 16;
x0 = (x0 <<16) + ((mp_limb_signed_t)(x0*t)> >(16+2));
/* x0 is a 16 bits approximation of 1/sqrt(a0) */
...

Table lookup, Newton iteration toward 1/
√
a,

modified Newton iteration toward a/
√
a, correcting step.

Hand-coded fixed-point arithmetic.

Intentional overflow: (a0<<14) - t*t.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 5/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

GMP’s 64-bit Square Root

mp_limb_t mpn_sqrtrem1(mp_ptr rp , mp_limb_t a0) {
mp_limb_t a1, x0 , t2 , t, x2;
unsigned abits = a0 >> (GMP_LIMB_BITS - 1 - 8);
x0 = 0x100 | invsqrttab[abits - 0x80];
/* x0 is an 8 bits approximation of 1/sqrt(a0) */
a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
t = (mp_limb_signed_t) (CNST_LIMB (0 x2000000000000)

- 0x30000 - a1 * x0 * x0) >> 16;
x0 = (x0 <<16) + ((mp_limb_signed_t)(x0*t)> >(16+2));
/* x0 is a 16 bits approximation of 1/sqrt(a0) */
...

Table lookup, Newton iteration toward 1/
√
a,

modified Newton iteration toward a/
√
a, correcting step.

Hand-coded fixed-point arithmetic.

Intentional overflow: (a0<<14) - t*t.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 5/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

GMP’s 64-bit Square Root

mp_limb_t mpn_sqrtrem1(mp_ptr rp , mp_limb_t a0) {
mp_limb_t a1, x0 , t2 , t, x2;
unsigned abits = a0 >> (GMP_LIMB_BITS - 1 - 8);
x0 = 0x100 | invsqrttab[abits - 0x80];
/* x0 is an 8 bits approximation of 1/sqrt(a0) */
a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
t = (mp_limb_signed_t) (CNST_LIMB (0 x2000000000000)

- 0x30000 - a1 * x0 * x0) >> 16;
x0 = (x0 <<16) + ((mp_limb_signed_t)(x0*t)> >(16+2));
/* x0 is a 16 bits approximation of 1/sqrt(a0) */
...

Table lookup, Newton iteration toward 1/
√
a,

modified Newton iteration toward a/
√
a, correcting step.

Hand-coded fixed-point arithmetic.

Intentional overflow: (a0<<14) - t*t.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 5/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

GMP’s 64-bit Square Root

mp_limb_t mpn_sqrtrem1(mp_ptr rp , mp_limb_t a0) {
mp_limb_t a1, x0 , t2 , t, x2;
unsigned abits = a0 >> (GMP_LIMB_BITS - 1 - 8);
x0 = 0x100 | invsqrttab[abits - 0x80];
/* x0 is an 8 bits approximation of 1/sqrt(a0) */
a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
t = (mp_limb_signed_t) (CNST_LIMB (0 x2000000000000)

- 0x30000 - a1 * x0 * x0) >> 16;
x0 = (x0 <<16) + ((mp_limb_signed_t)(x0*t)> >(16+2));
/* x0 is a 16 bits approximation of 1/sqrt(a0) */
...

Table lookup, Newton iteration toward 1/
√
a,

modified Newton iteration toward a/
√
a, correcting step.

Hand-coded fixed-point arithmetic.

Intentional overflow: (a0<<14) - t*t.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 5/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

The Why3 Workflow

WhyML
library

GMP library Specification

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 6/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

The Why3 Workflow

WhyML
library

GMP library Specification

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 6/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

The Why3 Workflow

WhyML
library

GMP library Specification

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 6/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

The Why3 Workflow

WhyML
library

GMP library Specification

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 6/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

The Why3 Workflow

WhyML
library

GMP library Specification

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 6/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

The Why3 Workflow

WhyML
library

GMP library Specification

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 6/18

Introduction Fixed-point Proof Conclusion Motivation Sqrt Workflow

The Why3 Workflow

WhyML
library

GMP library Specification

Why3

Verification
conditions

Verified
C library

SMT solvers

Coq Gappa

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 6/18

Introduction Fixed-point Proof Conclusion Why3 Shifts Translation

Outline

1 Introduction

2 Fixed-point arithmetic
A Why3 theory
The case of shifts
Translating from C to WhyML

3 Doing the verification

4 Conclusion

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 7/18

Introduction Fixed-point Proof Conclusion Why3 Shifts Translation

How to Relate Integers with Real Numbers?

To express the quadratic convergence of Newton’s iteration,
the computed integers have to be seen as real numbers.

3. Accounting for overflows

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 8/18

Introduction Fixed-point Proof Conclusion Why3 Shifts Translation

How to Relate Integers with Real Numbers?

To express the quadratic convergence of Newton’s iteration,
the computed integers have to be seen as real numbers.

1. Stored as integers

type fxp = uint64

let fxp_add (x y: fxp): fxp
= x + y

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 8/18

Introduction Fixed-point Proof Conclusion Why3 Shifts Translation

How to Relate Integers with Real Numbers?

To express the quadratic convergence of Newton’s iteration,
the computed integers have to be seen as real numbers.

2. Representing real numbers

type fxp = { ival: uint64; ghost iexp: int }
let ghost rval (x: fxp): real = ival x *. pow2 iexp

let fxp_add (x y: fxp): fxp
requires { iexp x = iexp y }
requires { ival x + ival y <= max_uint64 }
ensures { iexp result = iexp x }
ensures { rval result = rval x +. rval y }

= { ival = ival x + ival y; iexp = iexp x }

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 8/18

Introduction Fixed-point Proof Conclusion Why3 Shifts Translation

How to Relate Integers with Real Numbers?

To express the quadratic convergence of Newton’s iteration,
the computed integers have to be seen as real numbers.

3. Accounting for overflows

type fxp = { ival: uint64;
ghost rval: real; ghost iexp: int }

invariant { rval = floor_at rval iexp }
invariant { ival = mod (floor (rval *. pow2(-iexp)))

(uint64 ’maxInt + 1) }

val fxp_add (x y: fxp): fxp
requires { iexp x = iexp y }
ensures { iexp result = iexp x }
ensures { rval result = rval x +. rval y }

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 8/18

Introduction Fixed-point Proof Conclusion Why3 Shifts Translation

The Case of Shifts

(mp limb signed t) (x0 * t) >> (16+2)

A shift might

cause rounding (here, loss of the 18 least significant bits),

align the point for subsequent operations (here, by 17 bits),

perform a multiplication on real numbers (here, by 2−1).

val fxp_asr ’ (x: fxp) (k: uint64) (ghost m: int): fxp
requires { int64 ’minInt *. pow2 (iexp x) <=.

rval x <=. int64 ’maxInt *. pow2 (iexp x) }
ensures { iexp result = iexp x + k - m }
ensures { rval result =

floor_at (rval x *. pow2 (-m)) (iexp x + k - m) }

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 9/18

Introduction Fixed-point Proof Conclusion Why3 Shifts Translation

The Case of Shifts

(mp limb signed t) (x0 * t) >> (16+2)

A shift might

cause rounding (here, loss of the 18 least significant bits),

align the point for subsequent operations (here, by 17 bits),

perform a multiplication on real numbers (here, by 2−1).

val fxp_asr ’ (x: fxp) (k: uint64) (ghost m: int): fxp
requires { int64 ’minInt *. pow2 (iexp x) <=.

rval x <=. int64 ’maxInt *. pow2 (iexp x) }
ensures { iexp result = iexp x + k - m }
ensures { rval result =

floor_at (rval x *. pow2 (-m)) (iexp x + k - m) }

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 9/18

Introduction Fixed-point Proof Conclusion Why3 Shifts Translation

Translating from C to WhyML

let sqrt1 (rp: ptr uint64) (a0: uint64): uint64 =
let a = fxp_init a0 (-64) in
let x0 = rsa_estimate a in
let a1 = fxp_lsr a 31 in
let m1 = fxp_sub (fxp_init 0x2000000000000 (-49))

(fxp_init 0x30000 (-49)) in
let t1’ = fxp_sub m1 (fxp_mul (fxp_mul x0 x0) a1) in
let t1 = fxp_asr t1 ’ 16 in
let x1 = fxp_add (fxp_lsl x0 16)

(fxp_asr ’ (fxp_mul x0 t1) 18 1) in
let a2 = fxp_lsr a 24 in let u1 = fxp_mul x1 a2 in
let u2 = fxp_lsr u1 25 in
let m2 = fxp_init 0x24000000000 (-78) in
let t2’ = fxp_sub (fxp_sub (fxp_lsl a 14) (fxp_mul u2 u2)) m2 in
let t2 = fxp_asr t2 ’ 24 in
let x2 = fxp_add u1 (fxp_asr ’ (fxp_mul x1 t2) 15 1) in
let x = fxp_lsr x2 32 in
let ref c = ival x in let ref s = c * c in
if (s + 2 * c <= a0 - 1) then begin

s <- s + 2 * c + 1;
c <- c + 1;

end;
set rp (a0 - s); c

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 10/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Outline

1 Introduction

2 Fixed-point arithmetic

3 Doing the verification
Verification conditions
Error analysis
Manual hints

4 Conclusion

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 11/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Verification Conditions

Specification

let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
requires { valid rp 1 }
requires { 0x4000000000000000 <= a0 }
ensures { result*result <= a0

< (result +1)*(result +1) }
ensures { result*result + get rp = a0 }
ensures { get rp <= 2 * result }

Kinds of verification conditions

1 Memory accesses are valid; fixed-point numbers are aligned.
(automatic)

2 Result is correctly reconstructed from the fixed-point value x2.
(verbose, but straightforward)

3 x1 and x2 are accurate, e.g., x2 −
√
a ∈ [−2−32; 0]. (???)

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 12/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Verification Conditions

Specification

let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
requires { valid rp 1 }
requires { 0x4000000000000000 <= a0 }
ensures { result*result <= a0

< (result +1)*(result +1) }
ensures { result*result + get rp = a0 }
ensures { get rp <= 2 * result }

Kinds of verification conditions
1 Memory accesses are valid; fixed-point numbers are aligned.

(automatic)

2 Result is correctly reconstructed from the fixed-point value x2.
(verbose, but straightforward)

3 x1 and x2 are accurate, e.g., x2 −
√
a ∈ [−2−32; 0]. (???)

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 12/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Verification Conditions

Specification

let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
requires { valid rp 1 }
requires { 0x4000000000000000 <= a0 }
ensures { result*result <= a0

< (result +1)*(result +1) }
ensures { result*result + get rp = a0 }
ensures { get rp <= 2 * result }

Kinds of verification conditions
1 Memory accesses are valid; fixed-point numbers are aligned.

(automatic)

2 Result is correctly reconstructed from the fixed-point value x2.
(verbose, but straightforward)

3 x1 and x2 are accurate, e.g., x2 −
√
a ∈ [−2−32; 0]. (???)

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 12/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Verification Conditions

Specification

let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
requires { valid rp 1 }
requires { 0x4000000000000000 <= a0 }
ensures { result*result <= a0

< (result +1)*(result +1) }
ensures { result*result + get rp = a0 }
ensures { get rp <= 2 * result }

Kinds of verification conditions
1 Memory accesses are valid; fixed-point numbers are aligned.

(automatic)

2 Result is correctly reconstructed from the fixed-point value x2.
(verbose, but straightforward)

3 x1 and x2 are accurate, e.g., x2 −
√
a ∈ [−2−32; 0]. (???)

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 12/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Error Analysis

Newton iteration toward 1/
√
a

Recurrence: xi+1 = xi + xi · (1− a · x2
i)/2.

Relative error: xi = a−1/2 · (1 + εi).

Quadratic convergence: |εi+1| ' 3
2 |εi |

2.

But what the code actually computes is

x̃1 = x̃0 +5−24

(
x̃0 · 5−33

(
1− 3 · 2−33 −5−33(a) · x̃2

0

)
/2

)
,

with 5k(r) = br · 2−kc · 2k .

What to do about. . .

Rounding errors? That is what Gappa is designed to handle.

Magic constants? Critical for soundness; hinted to Gappa.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 13/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Error Analysis

Newton iteration toward 1/
√
a

Recurrence: xi+1 = xi + xi · (1− a · x2
i)/2.

Relative error: xi = a−1/2 · (1 + εi).

Quadratic convergence: |εi+1| ' 3
2 |εi |

2.

But what the code actually computes is

x̃1 = x̃0 +5−24

(
x̃0 · 5−33

(
1− 3 · 2−33 −5−33(a) · x̃2

0

)
/2
)
,

with 5k(r) = br · 2−kc · 2k .

What to do about. . .

Rounding errors? That is what Gappa is designed to handle.

Magic constants? Critical for soundness; hinted to Gappa.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 13/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Error Analysis

Newton iteration toward 1/
√
a

Recurrence: xi+1 = xi + xi · (1− a · x2
i)/2.

Relative error: xi = a−1/2 · (1 + εi).

Quadratic convergence: |εi+1| ' 3
2 |εi |

2.

But what the code actually computes is

x̃1 = x̃0 +5−24

(
x̃0 · 5−33

(
1− 3 · 2−33 −5−33(a) · x̃2

0

)
/2
)
,

with 5k(r) = br · 2−kc · 2k .

What to do about. . .

Rounding errors? That is what Gappa is designed to handle.

Magic constants? Critical for soundness; hinted to Gappa.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 13/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Error Analysis

Newton iteration toward 1/
√
a

Recurrence: xi+1 = xi + xi · (1− a · x2
i)/2.

Relative error: xi = a−1/2 · (1 + εi).

Quadratic convergence: |εi+1| ' 3
2 |εi |

2.

But what the code actually computes is

x̃1 = x̃0 +5−24

(
x̃0 · 5−33

(
1− 3 · 2−33 −5−33(a) · x̃2

0

)
/2
)
,

with 5k(r) = br · 2−kc · 2k .

What to do about. . .

Rounding errors? That is what Gappa is designed to handle.

Magic constants? Critical for soundness; hinted to Gappa.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 13/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Prover interoperability

Help Gappa by providing equalities

let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
= ...

let ghost rsa = pure { 1. /. sqrt a } in
let ghost e0 = pure { (x0 -. rsa) /. rsa } in
let ghost ea1 = pure { (a1 -. a) /. a } in
let ghost mx1 = pure { x0 +. x0 *. t1 ’ *. 0.5 } in
assert { (mx1 -. rsa) /. rsa =

-0.5 *. (e0*.e0 *. (3.+. e0) +. (1.+. e0) *.
(1. -. m1 +. (1.+.e0)*.(1.+. e0) *. ea1)) };

...

Four equalities are needed by Gappa:

they hardly mention rounding errors;

all of them are proved with straightforward Coq scripts.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 14/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Prover interoperability

Help Gappa by providing equalities

let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
= ...

let ghost rsa = pure { 1. /. sqrt a } in
let ghost e0 = pure { (x0 -. rsa) /. rsa } in
let ghost ea1 = pure { (a1 -. a) /. a } in
let ghost mx1 = pure { x0 +. x0 *. t1 ’ *. 0.5 } in
assert { (mx1 -. rsa) /. rsa =

-0.5 *. (e0*.e0 *. (3.+. e0) +. (1.+. e0) *.
(1. -. m1 +. (1.+.e0)*.(1.+. e0) *. ea1)) };

...

Four equalities are needed by Gappa:

they hardly mention rounding errors;

all of them are proved with straightforward Coq scripts.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 14/18

Introduction Fixed-point Proof Conclusion VC Error Hints

Prover interoperability

Assertions are proof cuts, not axioms.

Why3 makes sure everything was proved.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 15/18

Introduction Fixed-point Proof Conclusion

Outline

1 Introduction

2 Fixed-point arithmetic

3 Doing the verification

4 Conclusion

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 16/18

Introduction Fixed-point Proof Conclusion

A Verified 64-bit Integer Square Root

Fixed-point square root in WhyML

Extracted C code is equivalent to GMP’s code.

Ghost values also serve as documentation.

Proof replay takes less than 30 seconds.

Verification work took only a few days.

Shortcomings

The “magic” constant is not the same as GMP’s.

Why3 does not yet support literal arrays,
so the lookup table is verified outside.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 17/18

Introduction Fixed-point Proof Conclusion

A Verified 64-bit Integer Square Root

Fixed-point square root in WhyML

Extracted C code is equivalent to GMP’s code.

Ghost values also serve as documentation.

Proof replay takes less than 30 seconds.

Verification work took only a few days.

Shortcomings

The “magic” constant is not the same as GMP’s.

Why3 does not yet support literal arrays,
so the lookup table is verified outside.

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 17/18

Introduction Fixed-point Proof Conclusion

A Verified Library Compatible with GMP

Supported operations

Addition, subtraction, comparison, shifts.

Multiplication: quadratic, and Toom-Cook 2 and 2.5.

Division: “schoolbook”.

Square root: divide-and-conquer.

Performances

About 10-20% slower than pure-C GMP (for “small” inputs).

About 2x slower than GMP with hand-coded assembly.

Faster than Mini-GMP.

https://www.lri.fr/~rieu/wmp.html

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 18/18

https://www.lri.fr/~rieu/wmp.html

Introduction Fixed-point Proof Conclusion

A Verified Library Compatible with GMP

Supported operations

Addition, subtraction, comparison, shifts.

Multiplication: quadratic, and Toom-Cook 2 and 2.5.

Division: “schoolbook”.

Square root: divide-and-conquer.

Performances

About 10-20% slower than pure-C GMP (for “small” inputs).

About 2x slower than GMP with hand-coded assembly.

Faster than Mini-GMP.

https://www.lri.fr/~rieu/wmp.html

Melquiond, Rieu-Helft Formal Verification of a State-of-the-Art Integer Square Root 18/18

https://www.lri.fr/~rieu/wmp.html

	Introduction
	Motivation
	64-bit square root
	Workflow

	Fixed-point arithmetic
	A Why3 theory
	The case of shifts
	Translating from C to WhyML

	Doing the verification
	Verification conditions
	Error analysis
	Manual hints

	Conclusion
	Appendix

