
Reflections on 10 years of FloPoCo

Florent de Dinechin



The FloPoCo project

A generator of application-specific hardware arithmetic operators

open-ended list (division by 3, exp, log, trigs, ...
function approximators, FIIR, IIR, ...)

each operator heavily parameterized

Functional specification
Performance specification

e

x

√
x2 +y2 +z2

πx

sin
e x+

y

n∑
i=

0
x i

√
x log x

FloPoCo

arithmetic operation

input formats

output formats
...

FPGA frequency ...

.vhdl

A philosophy of computing just right
Interface: never output bits that are not numerically meaningful

(output format =⇒ accuracy specification)
Inside: never compute bits that are not useful to the final result

F. de Dinechin Reflections on 10 years of FloPoCo 2



The FloPoCo project

A generator of application-specific hardware arithmetic operators

open-ended list (division by 3, exp, log, trigs, ...
function approximators, FIIR, IIR, ...)

each operator heavily parameterized

Functional specification
Performance specification

e

x

√
x2 +y2 +z2

πx

sin
e x+

y

n∑
i=

0
x i

√
x log x

FloPoCo

arithmetic operation

input formats

output formats
...

FPGA frequency ...

.vhdl

A philosophy of computing just right
Interface: never output bits that are not numerically meaningful

(output format =⇒ accuracy specification)
Inside: never compute bits that are not useful to the final result

F. de Dinechin Reflections on 10 years of FloPoCo 2



A candidate for the Worst Logo Ever contest

Right: a floating-point exponential
(with bits of M. Joldes and B. Pasca)

e

x

√
x2 +y2 +z2

πx

sin
e x+

y

n∑
i=

0
x i

√
x log x

each wire, each component
tailored to its context

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

F. de Dinechin Reflections on 10 years of FloPoCo 3



Genesis

Genesis

Focus on two features

The future

F. de Dinechin Reflections on 10 years of FloPoCo 4



All my life, I have been afflicted with very good students

Very good students tend to write kilolines of (very good?) code

FPLibrary (Jérémie Detrey’s PhD, 2004-2007):

open-source VHDL for floating-point +, −, ×, /,
√

,
then sin, cos, exp, log, ...
then LNS (logarithm number system) arithmetic
plus two generic HW function approximation techniques

... plus bits of Java/Python/C++ to generate some of the VHDL

from SRT tables for division and square root
... to Remez + error analysis + design-space exploration

A solid and well-tested agile development methodology

one paper, one bit of quick-and-dirty code

That’s a lot of work doomed to oblivion when the student leaves

(this particular traitor defected to finite-field arithmetic)

F. de Dinechin Reflections on 10 years of FloPoCo 5



All my life, I have been afflicted with very good students

Very good students tend to write kilolines of (very good?) code

FPLibrary (Jérémie Detrey’s PhD, 2004-2007):

open-source VHDL for floating-point +, −, ×, /,
√

,
then sin, cos, exp, log, ...
then LNS (logarithm number system) arithmetic
plus two generic HW function approximation techniques

... plus bits of Java/Python/C++ to generate some of the VHDL

from SRT tables for division and square root
... to Remez + error analysis + design-space exploration

A solid and well-tested agile development methodology

one paper, one bit of quick-and-dirty code

That’s a lot of work doomed to oblivion when the student leaves

(this particular traitor defected to finite-field arithmetic)

F. de Dinechin Reflections on 10 years of FloPoCo 5



All my life, I have been afflicted with very good students

Very good students tend to write kilolines of (very good?) code

FPLibrary (Jérémie Detrey’s PhD, 2004-2007):

open-source VHDL for floating-point +, −, ×, /,
√

,
then sin, cos, exp, log, ...
then LNS (logarithm number system) arithmetic
plus two generic HW function approximation techniques

... plus bits of Java/Python/C++ to generate some of the VHDL

from SRT tables for division and square root
... to Remez + error analysis + design-space exploration

A solid and well-tested agile development methodology

one paper, one bit of quick-and-dirty code

That’s a lot of work doomed to oblivion when the student leaves

(this particular traitor defected to finite-field arithmetic)

F. de Dinechin Reflections on 10 years of FloPoCo 5



All my life, I have been afflicted with very good students

Very good students tend to write kilolines of (very good?) code

FPLibrary (Jérémie Detrey’s PhD, 2004-2007):

open-source VHDL for floating-point +, −, ×, /,
√

,
then sin, cos, exp, log, ...
then LNS (logarithm number system) arithmetic
plus two generic HW function approximation techniques

... plus bits of Java/Python/C++ to generate some of the VHDL

from SRT tables for division and square root
... to Remez + error analysis + design-space exploration

A solid and well-tested agile development methodology

one paper, one bit of quick-and-dirty code

That’s a lot of work doomed to oblivion when the student leaves

(this particular traitor defected to finite-field arithmetic)

F. de Dinechin Reflections on 10 years of FloPoCo 5



And then a scientific Grand Plan

When FPGAs are better at floating-point than microprocessors

Submitted to ISFPGA

In my humble opinion, a visionary paper
“We can do this, we should do that”

Tepid reviews (“prove it”, “lack of results”)...

=⇒ poster

Then, overwhelming response to the poster...

F. de Dinechin Reflections on 10 years of FloPoCo 6



And then a scientific Grand Plan

When FPGAs are better at floating-point than microprocessors

Submitted to ISFPGA

In my humble opinion, a visionary paper
“We can do this, we should do that”

Tepid reviews (“prove it”, “lack of results”)...

=⇒ poster

Then, overwhelming response to the poster...

F. de Dinechin Reflections on 10 years of FloPoCo 6



Evolution of the Grand Plan

Initial brand

When FPGAs are better at floating-point than microprocessors

Not your neighbour’s FPU

First rebranding

FPGA-specific arithmetic (floating-point, but not only)
All the operators you will never see in a processor

(and how to build them)
(Arith 2011 panel)

Current rebranding

Application-specific arithmetic (FPGA, but not only)
Circuits computing just right

Save routing! Save power! Don’t move around useless bits!

F. de Dinechin Reflections on 10 years of FloPoCo 7



Evolution of the Grand Plan

Initial brand

When FPGAs are better at floating-point than microprocessors
Not your neighbour’s FPU

First rebranding

FPGA-specific arithmetic (floating-point, but not only)
All the operators you will never see in a processor

(and how to build them)
(Arith 2011 panel)

Current rebranding

Application-specific arithmetic (FPGA, but not only)
Circuits computing just right

Save routing! Save power! Don’t move around useless bits!

F. de Dinechin Reflections on 10 years of FloPoCo 7



Evolution of the Grand Plan

Initial brand

When FPGAs are better at floating-point than microprocessors
Not your neighbour’s FPU

First rebranding

FPGA-specific arithmetic (floating-point, but not only)

All the operators you will never see in a processor
(and how to build them)

(Arith 2011 panel)

Current rebranding

Application-specific arithmetic (FPGA, but not only)
Circuits computing just right

Save routing! Save power! Don’t move around useless bits!

F. de Dinechin Reflections on 10 years of FloPoCo 7



Evolution of the Grand Plan

Initial brand

When FPGAs are better at floating-point than microprocessors
Not your neighbour’s FPU

First rebranding

FPGA-specific arithmetic (floating-point, but not only)
All the operators you will never see in a processor

(and how to build them)
(Arith 2011 panel)

Current rebranding

Application-specific arithmetic (FPGA, but not only)
Circuits computing just right

Save routing! Save power! Don’t move around useless bits!

F. de Dinechin Reflections on 10 years of FloPoCo 7



Evolution of the Grand Plan

Initial brand

When FPGAs are better at floating-point than microprocessors
Not your neighbour’s FPU

First rebranding

FPGA-specific arithmetic (floating-point, but not only)
All the operators you will never see in a processor

(and how to build them)
(Arith 2011 panel)

Current rebranding

Application-specific arithmetic (FPGA, but not only)

Circuits computing just right

Save routing! Save power! Don’t move around useless bits!

F. de Dinechin Reflections on 10 years of FloPoCo 7



Evolution of the Grand Plan

Initial brand

When FPGAs are better at floating-point than microprocessors
Not your neighbour’s FPU

First rebranding

FPGA-specific arithmetic (floating-point, but not only)
All the operators you will never see in a processor

(and how to build them)
(Arith 2011 panel)

Current rebranding

Application-specific arithmetic (FPGA, but not only)
Circuits computing just right

Save routing! Save power! Don’t move around useless bits!

F. de Dinechin Reflections on 10 years of FloPoCo 7



First non-arithmetic slide

Other technical motivations (piling up with the code)

VHDL doesn’t scale well with number of parameters
(especially with Jeremie insisting in writing recursive hardware)

Research code ⇐⇒ design-space exploration
⇐⇒ many many parameters

I/O sizes

... but also design choices (e.g. SRT radix etc)

... and open-ended parameters (e.g. the constant in a constant multiplier)

... and we want to parameterize with the target FPGA!

A recurrent silly promise, each time we submit a paper:
“the design will be pipelined in the final version”

a perfect waste of good student’s time
exponential complexity WRT number of parameters

Heroic experiments with Xilinx JBits

F. de Dinechin Reflections on 10 years of FloPoCo 8



First non-arithmetic slide

Other technical motivations (piling up with the code)

VHDL doesn’t scale well with number of parameters
(especially with Jeremie insisting in writing recursive hardware)

Research code ⇐⇒ design-space exploration
⇐⇒ many many parameters

I/O sizes

... but also design choices (e.g. SRT radix etc)

... and open-ended parameters (e.g. the constant in a constant multiplier)

... and we want to parameterize with the target FPGA!

A recurrent silly promise, each time we submit a paper:
“the design will be pipelined in the final version”

a perfect waste of good student’s time
exponential complexity WRT number of parameters

Heroic experiments with Xilinx JBits

F. de Dinechin Reflections on 10 years of FloPoCo 8



First non-arithmetic slide

Other technical motivations (piling up with the code)

VHDL doesn’t scale well with number of parameters
(especially with Jeremie insisting in writing recursive hardware)

Research code ⇐⇒ design-space exploration
⇐⇒ many many parameters

I/O sizes

... but also design choices (e.g. SRT radix etc)

... and open-ended parameters (e.g. the constant in a constant multiplier)

... and we want to parameterize with the target FPGA!

A recurrent silly promise, each time we submit a paper:
“the design will be pipelined in the final version”

a perfect waste of good student’s time
exponential complexity WRT number of parameters

Heroic experiments with Xilinx JBits

F. de Dinechin Reflections on 10 years of FloPoCo 8



First non-arithmetic slide

Other technical motivations (piling up with the code)

VHDL doesn’t scale well with number of parameters
(especially with Jeremie insisting in writing recursive hardware)

Research code ⇐⇒ design-space exploration
⇐⇒ many many parameters

I/O sizes

... but also design choices (e.g. SRT radix etc)

... and open-ended parameters (e.g. the constant in a constant multiplier)

... and we want to parameterize with the target FPGA!

A recurrent silly promise, each time we submit a paper:
“the design will be pipelined in the final version”

a perfect waste of good student’s time
exponential complexity WRT number of parameters

Heroic experiments with Xilinx JBits

F. de Dinechin Reflections on 10 years of FloPoCo 8



Second non-arithmetic slide

Disputable Technical Choices (erreurs de jeunesse?)

C++ because Jérémie had written HOTBM in C++

Generating VHDL because FPLibrary was written in VHDL

A very modest approach to VHDL generation
(print out the VHDL code of FPLibrary)

Still, immediate benefits

single code base

scaling with parameterization

and very soon: automatic pipelining

F. de Dinechin Reflections on 10 years of FloPoCo 9



Focus on two features

Genesis

Focus on two features

The future

F. de Dinechin Reflections on 10 years of FloPoCo 10



So much VHDL to write, so few slaves to write it

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

Spartan 5
Spartan6

Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

I know how to optimize by hand each operator on each target
... But I don’t want to do it.

F. de Dinechin Reflections on 10 years of FloPoCo 11



One data-structure to rule them all

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

Algorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic descriptionAlgorithmic description∑
bi2

wi

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

The sum of weighted bits as a first-class arithmetic object

A very wide class of operators: multi-valued polynomials, and more

the bi can come from look-up tables (e.g. multipartite method)

Bit-level parallelism, bit-level optimization opportunities

Generating an architecture is well known:
bit array compressor trees can be optimized for each target

F. de Dinechin Reflections on 10 years of FloPoCo 12



When you have a good hammer,
you see nails everywhere

A sine/cosine architecture (Iştoan, HEART 2013):

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin Reflections on 10 years of FloPoCo 13



When you have a good hammer,
you see nails everywhere

A sine/cosine architecture (Iştoan, HEART 2013): 5 bit heaps

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin Reflections on 10 years of FloPoCo 13



A bit heap for Z − Z 3/6 in the previous architecture

Full bit heap

w=16 bits

Faithfully rounded bit heap
(computing just right)

Why are some people still insisting I should call this “bit arrays”?

F. de Dinechin Reflections on 10 years of FloPoCo 14



Bit heaps for other operators and filters

F. de Dinechin Reflections on 10 years of FloPoCo 15



It sounds like another Grand Plan

Arithmetic core generation using bit heaps

Submitted to Arith 2013

In my humble opinion, a visionary paper

Tepid reviews (“bit arrays are old stuff”, “lack of results”,
“many papers already with merged operators”)...

=⇒ reject

Conclusion: I’m not very good at writing visionary papers...

New interest in bit���-heap array compression

and I think Martin Kumm more or less solved it

F. de Dinechin Reflections on 10 years of FloPoCo 16



It sounds like another Grand Plan

Arithmetic core generation using bit heaps

Submitted to Arith 2013

In my humble opinion, a visionary paper

Tepid reviews (“bit arrays are old stuff”, “lack of results”,
“many papers already with merged operators”)...

=⇒ reject

Conclusion: I’m not very good at writing visionary papers...

New interest in bit���-heap array compression

and I think Martin Kumm more or less solved it

F. de Dinechin Reflections on 10 years of FloPoCo 16



It sounds like another Grand Plan

Arithmetic core generation using bit heaps

Submitted to Arith 2013

In my humble opinion, a visionary paper

Tepid reviews (“bit arrays are old stuff”, “lack of results”,
“many papers already with merged operators”)...

=⇒ reject

Conclusion: I’m not very good at writing visionary papers...

New interest in bit���-heap array compression

and I think Martin Kumm more or less solved it

F. de Dinechin Reflections on 10 years of FloPoCo 16



Second focus: optimization techniques

I used to write ad-hoc heuristics to optimize my architectures.

I’m now facing an invasion of generic optimization libraries!

Euclidean lattices for function approximation

Integer linear programming for

function approximation
bit heap compression (several algos)
constant multiplication design (several algos)

When you have a good hammer, you see nails everywhere.

What, no SAT solving yet?

F. de Dinechin Reflections on 10 years of FloPoCo 17



The future

Genesis

Focus on two features

The future

F. de Dinechin Reflections on 10 years of FloPoCo 18



HLS killed the FloPoCo star?

(HLS means High-Level Synthesis, also known as C-to-hardware)

Several successful experiments
exploiting C descriptions of floating-point operators

HLS does better what FloPoCo did 10 years ago

Optimize a floating-point operation for its context
because the compiler knows the context

automatic pipelining for the whole application!
(out of reach of FloPoCo)

Some design-space explorations cannot be done in HLS

constant multipliers, function approximators

HDL generators ⇐⇒ HLS source-to-source tools ?

(meanwhile, FloPoCo is being used as a back-end
for open-source HLS projects such as Bambu or Origami)

F. de Dinechin Reflections on 10 years of FloPoCo 19



The next ten years

Coarser and coarser operators: Where do we stop?

As long as I can compute it just right, it is in scope of FloPoCo
(for instance, I’m not sur AI accelerators are in scope...)

Find the proper balance between
maintaining a tool and advancing research?

very good students tend to leave a lot of mess behind...

Better code separation between arithmetic optimization
and VHDL generation

so that the arithmetic optimization can be shared with HLS

Generating parametric hardware was the easy part!

The difficult part of the problem is:
What precision is needed at this point of this application ?

F. de Dinechin Reflections on 10 years of FloPoCo 20



The next ten years

Coarser and coarser operators: Where do we stop?

As long as I can compute it just right, it is in scope of FloPoCo
(for instance, I’m not sur AI accelerators are in scope...)

Find the proper balance between
maintaining a tool and advancing research?

very good students tend to leave a lot of mess behind...

Better code separation between arithmetic optimization
and VHDL generation

so that the arithmetic optimization can be shared with HLS

Generating parametric hardware was the easy part!

The difficult part of the problem is:
What precision is needed at this point of this application ?

F. de Dinechin Reflections on 10 years of FloPoCo 20



The next ten years

Coarser and coarser operators: Where do we stop?

As long as I can compute it just right, it is in scope of FloPoCo
(for instance, I’m not sur AI accelerators are in scope...)

Find the proper balance between
maintaining a tool and advancing research?

very good students tend to leave a lot of mess behind...

Better code separation between arithmetic optimization
and VHDL generation

so that the arithmetic optimization can be shared with HLS

Generating parametric hardware was the easy part!

The difficult part of the problem is:
What precision is needed at this point of this application ?

F. de Dinechin Reflections on 10 years of FloPoCo 20



The next ten years

Coarser and coarser operators: Where do we stop?

As long as I can compute it just right, it is in scope of FloPoCo
(for instance, I’m not sur AI accelerators are in scope...)

Find the proper balance between
maintaining a tool and advancing research?

very good students tend to leave a lot of mess behind...

Better code separation between arithmetic optimization
and VHDL generation

so that the arithmetic optimization can be shared with HLS

Generating parametric hardware was the easy part!

The difficult part of the problem is:
What precision is needed at this point of this application ?

F. de Dinechin Reflections on 10 years of FloPoCo 20



Thanks for your attention

Thanks to all contributors
S. Banescu, L. Besème, N. Bonfante,
M. Christ, N. Brunie, S. Collange, J. Detrey,
P. Echeverŕıa, F. Ferrandi, L. Forget, M. Grad,
K. Illyes, M. Istoan, M. Joldes, J. Kappauf, C. Klein,
M. Kleinlein, M. Kumm, D. Mastrandrea, K. Moeller,
B. Pasca, B. Popa, X. Pujol, G. Sergent, D. Thomas,
R. Tudoran, A. Vasquez.
and the authors of NVC, Sollya, FPLLL, ScaLP, ...

e

x

√
x2 +y2 +z2

πx
sin

e x+
y

n∑
i=

0
x i

√
x log x

http://flopoco.gforge.inria.fr/

F. de Dinechin Reflections on 10 years of FloPoCo 21

http://flopoco.gforge.inria.fr/

	Genesis
	Focus on two features
	The future

